高中物理知识点:圆锥摆
◎ 圆锥摆的定义

圆锥摆的知识:

圆锥摆模型的结构特点——一根质量和伸长可以不计的线,系一个可以视为质点的摆球,在水平面内做匀速圆周运动,且在摆线沿顶点位置不变的圆锥面上运动。

◎ 圆锥摆的知识扩展
1、圆锥摆模型的结构特点——一根质量和伸长可以不计的线,系一个可以视为质点的摆球,在水平面内做匀速圆周运动,且在摆线沿顶点位置不变的圆锥面上运动。
2、圆锥摆模型的受力特点——只受两个力:竖直向下的重力(mg)和沿摆线方向的拉力(F),二力的合力就是摆球做圆周运动的向心力(Fn),如图所示。

3、向心力和向心加速度的计算
设摆球的质量为m,摆长为l,与竖直方向的夹角为θ,摆球的线速度、角速度、周期和频率依次为v、ω、T和f。如图所示,根据不同的条件
向心力可以表示为:
向心加速度可表示为:
4、摆线拉力的计算计算
摆线的拉力,有两种基本思路:
①当θ角已知时,
②当θ角未知时,
5、周期T、频率f和角速度ω的计算
根据向心加速度公式,有。式中为摆球的轨道平面到悬点的距离,即圆锥摆的高度。由这些公式可知,高度相同的圆锥摆,即等高圆锥摆的T、f和ω相等,与m、l和θ无关。
6、漏斗摆:物体在光滑的漏斗形容器内壁的某水平面上做匀速圆周运动。漏斗摆的力学特点:物体只受两个力,竖直向下的重力mg,垂直于漏斗壁的弹力,两个力的合力水平指向转轴,其向心力。如图所示。

①向心加速度的计算
,θ角一定,故an恒定。
②周期T、角速度ω、线速度v的计算(设匀速圆周运动的平面离漏斗尖端距离为h)
,得
,得
,得
可见,h增大,线速度增大,角速度减小,周期增大。
◎ 圆锥摆的特性

圆锥摆的特点:

1、圆锥摆模型的受力特点——只受两个力:竖直向下的重力(mg)和沿摆线方向的拉力(F),二力的合力就是摆球做圆周运动的向心力(Fn),如图所示。

2、向心力和向心加速度的计算
设摆球的质量为m,摆长为l,与竖直方向的夹角为θ,摆球的线速度、角速度、周期和频率依次为v、ω、T和f。如图所示,根据不同的条件
向心力可以表示为:
向心加速度可表示为:
3、摆线拉力的计算计算
摆线的拉力,有两种基本思路:
①当θ角已知时,
②当θ角未知时,
4、周期T、频率f和角速度ω的计算
根据向心加速度公式,有。式中为摆球的轨道平面到悬点的距离,即圆锥摆的高度。由这些公式可知,高度相同的圆锥摆,即等高圆锥摆的T、f和ω相等,与m、l和θ无关。
5、漏斗摆:物体在光滑的漏斗形容器内壁的某水平面上做匀速圆周运动。漏斗摆的力学特点:物体只受两个力,竖直向下的重力mg,垂直于漏斗壁的弹力,两个力的合力水平指向转轴,其向心力。如图所示。

①向心加速度的计算
,θ角一定,故an恒定。
②周期T、角速度ω、线速度v的计算(设匀速圆周运动的平面离漏斗尖端距离为h)
,得
,得
,得
可见,h增大,线速度增大,角速度减小,周期增大。

◎ 圆锥摆的知识点拨

结构特点:
一根质量和伸长可以不计的线,系一个可以视为质点的摆球,在水平面内作匀速圆周运动。

受力特点:
只受两个力:竖直向下的重力 mg 和沿摆线方向的拉力 F 。两个力的合力,就是摆球作圆周运动的向心力 F n

◎ 圆锥摆的教学目标
1、能结合实例分析,知道向心力是一种效果力以及方向。
2、能够用自己的语言归纳向心力公式的确切含义,并能用来进行简单的计算。
3、知道变速圆周运动中向心力是合外力的一个分力,能够描述合外力的作用效果。
◎ 圆锥摆的考试要求
能力要求:掌握
课时要求:60
考试频率:常考
分值比重:3
◎ 圆锥摆的所有试题
1