牛顿第二定律的试题列表
牛顿第二定律的试题100
如图所示,直线形挡板p1p2p3与半径为r的圆弧形挡板p3p4p5平滑连接并安装在水平台面b1b2b3b4上,挡板与台面均固定不动.线圈c1c2c3的匝数为n,其端点c1、c3通过导线分别与电阻如图所示,质量为m的球置于斜面上,被一个竖直挡板挡住、现用一个力F拉斜面,使斜面在水平面上做加速度为a的匀加速直线运动,忽略一切摩擦,以下说法中正确的是()A.若加速度如图所示,线圈由A位置开始下落,在磁场中受到的磁场力如果总小于重力,则它在A、B、C、D四个位置时,加速度关系为()A.aA>aB>aC>aDB.aA=aC>aB>aDC.aA=aC>aD>aBD.aA>aC>aB=aD如图所示,两平行的光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l、足够长且电阻忽略不计,导轨平面的倾角为α,条形匀强磁场的宽度为d,磁感应强度大小为B、方向与导轨平如图所示,虚线上方有场强为E的匀强电场,方向竖直向下,虚线上下有磁感应强度相同的匀强磁场,方向垂直纸面向外,ab是一根长为l的绝缘细杆,沿电场线放置在虚线上方的场中,如图所示,在离斜面底B点为L的O点竖直固定一长为L的直杆OA,A端与B点之间也用直杆连接.在杆上穿一光滑小环,先后两次从A点无初速度释放小环,第一次沿AO杆下滑,第二次沿AB杆如图所示,工人用绳索拉铸件,从静止开始在水平面上前进.已知铸件的质量是20kg,工人用F=60N的力拉铸件,绳跟水平方向的夹角为37°并保持不变,经4s后松手,铸件在水平面上继倾角30°的光滑斜面上,固定一质量为m=1kg的物块,物块到底端距离S=240米,物块受到一个平行于斜面向上的外力F作用,F的大小随时间周期性变化关系如图所示,t=ls时,由静止释如图所示,倾角θ=37°的斜面上,轻弹簧一端固定在A点,自然状态时另一端位于B点,斜面上方有一半径R=1m、圆心角等于143°的竖直圆弧形光滑轨道与斜面相切于D处,圆弧轨道的最高如图,光滑圆弧轨道与水平轨道平滑相连.在水平轨道上有一轻质弹簧,右端固定在墙M上,左端连接一个质量为2m的滑块C.开始C静止在P点,弹簧正好为原长.在水平轨道上方O处,用长核聚变能以氘、氚等为燃料,具有安全、洁净、储量丰富三大优点,是最终解决人类能源危机的最有效手段.(1)两个氘核21H结合成一个氦核32He时,要放出某种粒子,同时释放出能量如图所示是伽利略理想斜面实验中的一幅图,一小球在光滑槽内运动,槽底水平部分长5m,若小球由A点静止开始运动,经4s到达另一斜面与A等高的B点,且已知小球在水平部分运动时如图甲所示,质量为m=1kg的物体置于倾角θ=37°的固定粗糙斜面上.对物体施以平行于斜面向上的拉力F,t1=1s时撤去拉力,物体运动的部分v-t图象如图乙所示,则下列说法中正确的是滑雪运动员从A点由静止沿倾角为θ的斜面滑下,经一平台后水平飞离B点,B点离地高度为H,斜面、平台与滑雪板之间的动摩擦因数均为μ.OA=OB=L,假设滑雪者由斜面底端进入平台后立如图甲所示,真空中两水平放置的平行金属板C、D上分别开有正对的小孔O1和O2,两板接在交流电源上,两板间的电压uCD随时间t变化的图线如图乙所示.从t=0时刻开始,从C板小孔O1如图所示,某要乘雪橇从雪坡经A点滑到B点,接着沿水平路面滑至C点停止.人与雪橇的总质量为70kg.右表中记录了沿坡滑下过程中的有关数据,开始时人与雪橇距水平路面的高度h=20如图所示,光滑曲线导轨足够长,固定在绝缘斜面上,匀强磁场B垂直斜面向上.一导体棒从某处以初速度v0沿导轨面向上滑动,最后又向下滑回到原处.导轨底端接有电阻R,其余电阻不在研究性学习中,某同学设计了一个测定带电粒子比荷的实验,其实验装置如图所示.abcd是一个长方形盒子,在ad边和cd边上各开有小孔f和e,e是cd边上的中点,荧光屏M贴着cd放置如图所示,三维坐标系O-xyz的z轴方向竖直向上,所在空间存在y轴正方向的匀强电场,一质量为m、电荷量为+q的小球从z轴上的A点以速度v0水平抛出,A点坐标为(0,0,l),重力加速如图甲所示,MNCD为一足够长的光滑绝缘斜面,EFGH范围内存在方向垂直斜面的匀强磁场,磁场边界EF、HG与斜面底边MN(在水平面内)平行.一正方形金属框abcd放在斜面上,ab边平行如图甲所示,在边界MN左侧存在斜方向的匀强电场E1;在MN的右侧有竖直向上、场强大小为E2=0.4N/C的匀强电场,还有垂直纸面向内的匀强磁场B(图甲中未画出)和水平向右的匀强电质量为2千克的物体,放在动摩擦因数μ=0.1的水平面上,在水平拉力的作用下,由静止开始运动,水平拉力做的功W和物体发生的位移S之间的关系如图所示,则()A.此物体在AB段做匀如图所示,质量为m1=1kg的小物块P置于桌面上的A点并与弹簧的右端接触(不拴接),轻弹簧左端固定,且处于原长状态.质量M=3.5kg、长L=1.2m的小车静置于光滑水平面上,其上表面(1)ABS刹车辅助系统是一种先进的汽车制动装置,可保证车轮在制动时不被抱死,使车轮仍有一定的滚动,安装了这种防抱死装置的汽车,在紧急刹车时可获得比车轮抱死更大的制动力如图甲所示,足够长的光滑平行金属导轨MN、PQ所在平面与水平面成30°角,两导轨的间距l=0.50m,一端接有阻值R=1.0Ω的电阻.质量m=0.10kg的金属棒ab置于导轨上,与轨道垂直,如图甲所示,偏转电场的两个平行极板水平放置,板长L=0.08m,板距足够大,两板的右侧有水平宽度l=0.06m、竖直宽度足够大的有界匀强磁场.一个比荷为q/m=5×107C/kg的粒子(其如图甲所示,在倾角为30°的足够长的光滑斜面上,有一质量为m的物体,受到沿斜面方向的力F作用,力F按图乙所示规律变化(图中纵坐标是F与mg的比值,力沿斜面向上为正).则物体运一传送带装置如图所示,其中AB段是水平的,长度LAB=4m,BC段是倾斜的,长度lBC=5m,倾角为θ=37°,AB和BC在B点通过一段极短的圆弧连接(图中未画出圆弧),传送带以v=4m/s的恒定在地面上方某处的真空室里存在着水平方向的匀强电场,以水平向右和竖直向上为x轴、y轴正方向建立如图所示的平面直角坐标系.一质量为m、带电荷量为+q的微粒从点P(33l,0)由静如图1所示,A、B为水平放置的平行金属板,板间距离为d(d远小于板的长和宽).在两板的中心各有小孔O和O’,O和O’处在同一竖直线上.在两板之间有一带负电的质点P.已知A、B间所如图所示,两个半径不同而内壁光滑的半圆轨道固定在地面上,质量相等的两个小球分别从与球心在同一水平高度的A、B两点由静止开始自由滑下,它们通过轨道最低点时()A.速度相同如图所示,AB为一水平放置的绝缘平板,虚线L右边存在着垂直纸面向里的匀强磁场B.从t=0时刻起再在虚线L右边加一水平向左的电场,电场强度E随时间t的变化规律是E=Kt.平板上有一一质点的速度-时间图象如图所示,图线最后一段为渐近线,则与之相对应的合外力大小随时间变化的图象应该是()A.B.C.D.(1)我国的“探月工程”计划于2015年宇航员登上月球.“探月工程”总指挥部向全国中学生征集可在月球完成的航天科技小实验.小军同学设想:宇航员登月前记录贴近月球表面绕月球做匀速(1)一斜面体放在水平光滑的地面上,如图所示.斜面体高h=0.6m,底边长d=0.8m.一质量m=0.5kg的小滑块从斜面顶端由静止开始下滑.为了保持斜面体静止不动,需对斜面体施加一个如图,半径为R的光滑半圆面固定在竖直面内,其直径AB处于竖直方向上.一质量为m的小球以初速度v0从最低点A水平射入轨道并运动到最高点B处.则()A.小球的初速度v0至少为2gRB.小图中的AOB是游乐场中的滑道模型,它位于竖直平面内,由两个半径都是R的14圆周连接而成,它们的圆心O1、O2与两圆弧的连接点O在同一竖直线上.O2B沿水池的水面.一小滑块可由弧A如图,A、B两木块用紧绷的细线相连,细线长0.5m,两木块的质量为mA=1.0kg,mB=2.0kg,在水平向右的拉力作用下以某一速度水平向右做匀速运动,两物体与地面间的摩擦力与重如图甲所示,A、B两物体静止叠放在光滑水平面上,对A物体施加一水平力F,F随时间t变化的关系图象如图乙所示.两物体在力F作用下开始运动,且始终相对静止,则()A.A对B的摩擦力机车在平直轨道上做匀加速运动,假设运动中所受的阻力始终不变,下列说法正确的是()A.机车输出功率不变B.机车输出功率逐渐减少C.在任意两相等时间内,机车动能变化相等D.在任物体从斜面底部以一定的速率沿斜面向上运动,斜面底边水平,倾角可在0°~90°之间变化,物体沿斜面到达的最远距离x和倾角θ的关系如图所示,求:(1)物体与接触面的动摩擦因数;(连接A、B两点的在竖直面内的弧形轨道ACB和ADB形状相同、材料相同,如图所示.一个小物体从A点以一定初速度v开始沿轨道ACB运动,到达B点的速度为v1;若以相同大小的初逮度v沿轨如图所示,轻线一端系一质量为m的小球,另一端穿过光滑小孔套在正下方的图钉A上,此时小球在光滑的水平平台上做半径为a、角速度为ω的匀速圆周运动.现拔掉图钉A让小球飞出,此一辆电动自行车,蓄电池一次充足电后可向电动机提供E0=1.5×106J的能量,电动机的额定输出功率为P=120w.已知电动车(含电池)的质量m=40kg,最大载重(即骑车人和所载货物的最大如图所示,倾角为30°的粗糙斜面的底端有一小车,车内有一根垂直小车底面的细直管,车与斜面间的动摩擦因数μ=4315,在斜面底端的竖直线上,有一可以上下移动的发射枪,能够沿如图所示,在质量为mB=30kg的车厢B内紧靠右壁,放一质量mA=20kg的小物体A(可视为质点),对车厢B施加一水平向右的恒力F,且F=120N,使之从静止开始运动.测得车厢B在最初t=2.如图所示,光滑水平面上静止一质量为M=0.98㎏的物块.紧挨平台右侧有传送带,与水平面成θ=30°角,传送带底端A点和顶端B点相距L=3m.一颗质量为m=0.02kg的子弹,以v0=300m/s的质量为m=1kg的物体从斜面底端出发以初速度v0沿斜面向上滑,其速度随时间变化关系图象如图所示,g=10m/s2,求:(1)斜面的倾角θ及恒定阻力Ff的大小;(2)物体上滑过程中离开出发质量相同的两小球,分别用长L和2L的细绳挂在天花板上,分别拉起小球使绳伸直呈水平状态,然后轻轻释放.当小球到达最低位置时()A.两球运动的线速度相等B.两球运动的角速度相等如图所示,质量为m的小球用长为l的轻质细线悬挂于O点,与O点处于同一水平线的P点处有一根光滑的细钉,已知OP=l2,在A点给小球一个水平向左的初速度v0,发现小球恰好能到达跟如图甲所示,在光滑绝缘的水平面上固定着两对几何形状完全相同的平行金属板PQ和MN,P、Q与M、N四块金属板相互平行地竖直地放置,其俯视图如图乙所示.已知P、Q之间以及M、N之如图所示,一名消防队员在模拟演习训练中,沿着长为12m的竖立在地面上的钢管住下滑.已知这名消防队员的质量为60㎏,他从钢管顶端由静止开始先匀加速再匀减速下滑,滑到地面时如图所示,木块质量m=0.78kg,在与水平方向成θ=37°角、斜向右上方的恒定拉力F作用下,以a=2.0m/s2的加速度从静止开始做匀加速直线运动,在3s末时撤去拉力F.已知木块与地面如图,ABCD是边长为a的正方形.质量为m、电荷量为e的电子以大小为v0的初速度沿纸面垂直于BC变射入正方形区域.在正方形内适当区域中有匀强磁场.电子从BC边上的任意点入射,都只如图所示两个内壁光滑、半径不同的半球形碗,放在不同高度的水平面上,使两碗口处于同一水平面.现将质量相同的两个小球(小球半径远小于碗的半径),分别从两个碗的边缘由静止如图所示,一个小木块被压缩的弹簧卡在玩具小车的左、右两壁之间,当小车在水平面上向右做加速度逐渐增大的加速运动时,不计一切摩擦,玩具小车左、右两壁受到的压力F1和F2的如图所示,空间存在磁感应强度为B,方向竖直向下的匀强磁场,MN、PQ是相互平行的粗糙的长直金属导轨,处于同一水平面内,间距为L,电阻不计,在导轨左端连有电阻、电源和单刀空间内有两个沿竖直方向的有界匀强磁场I、II,磁感应强度大小均为B,宽度均为L,边界线平行,磁场I竖直向下,磁场II竖直向上,如图所示为俯视图.一边长为L、质量为m的正方形如图所示,t=0时,质量为0.5kg物体从光滑斜面上的A点由静止开始下滑,经过B点后进入水平面(设经过B点前后速度大小不变),最后停在C点.测得每隔2s的三个时刻物体的瞬时速度记如图所示,小车上有一支架ABC,其中杆AB与斜面垂直,杆BC与斜面平行,在BC的末端有一个质量为m的小球.小车由静止释放后沿倾角为α的光滑斜面下滑,则杆对小球的弹力()A.竖直向如图甲所示,劲度系数为k的轻弹簧竖直放置,下端固定在水平地面上,一质量为m的小球,从离弹簧上端高h处自由下落,接触弹簧后继续向下运动.若以小球开始下落的位置为原点,沿如图所示,物体从光滑斜面上的A点由静止开始下滑,经过B点后进入水平面,最后停在C点.现每隔0.2s通过传感器测量物体的运动速率v,下表给出了部分测量数据.设物体经过B点前后如图,一滑块通过长度不计的短绳拴在小车的板壁上,小车上表面光滑.小车由静止开始向右匀加速运动,经过2s,细绳断裂.细绳断裂后,小车的加速度不变,又经过一段时间,滑块从手托着一本书,由静止开始向上匀加速运动,则手对书的支持力与书的重力的关系为()A.支持力小于书的重力B.支持力等于书的重力C.支持力大于书的重力D.上述三种情况都有可能质量为m的汽车以速度v经过半径为r的凸形拱形桥最高点时,对桥面压力大小为(地球表面的重力加速度为g)()A.mg+mv2rB.mg-mv2rC.mgD.mv2r如图所示,一辆平板小车静止在水平地面上,小车的右端放置一物块(可视为质点).已知小车的质量M=4.0kg,长度l=1.0m,其上表面离地面的高度h=0.80m.物块的质量m=1.0kg,它一个人站立在商店的自动扶梯的水平踏板上,随扶梯向上加速,如图所示,则()A.踏板对人做的功等于人的机械能增加量B.人对踏板的压力大小等于人所受到的重力大小C.人只受重力和如图所示,可视为质点的物块A、B、C放在倾角为θ=37°、长L=2.0m的固定斜面上,物块与斜面间的动摩擦因数μ=0.5,A与B紧靠在一起,C紧靠在固定挡板上,物块的质量分别为mA=0.风洞实验室可产生水平方向的、大小可调节的风力.在风洞中有一个固定的支撑架ABC,该支撑架的外表面光滑,且有一半径为R的四分之一圆柱面,支撑架固定在离地面高为2R的平台上半径为R的水平圆盘固定一个质量为m的物体,当盘以角速度ω绕O轴做匀速圆周运动时,物体的线速度为v,则物体受到的向心力大小为()A.mv2RB.mω2RC.mg-mv2RD.mωv电场中某区域的电场线分布如图所示,A、B是电场中的两点,则()A.同一点电荷放在A点受到的静电力比放在B点时受到的静电力小B.因为B点没有电场线,所以电荷在B点不受到静电力作雨滴下落时所受到的空气阻力与雨滴的速度有关,雨滴速度越大,它受到的空气阻力越大;此外,当雨滴速度一定时,雨滴下落时所受到的空气阻力还与雨滴半径的α次方成正比(1≤α≤2半径为R的水平圆台,可绕通过圆心O的竖直光滑细轴CC′转动,如图所示,圆台上沿相互垂直的两个半径方向刻有凹槽,质量为mA的物体A放在一个槽内,物体A与槽底间的动摩擦因数为北京时间2011年2月18日晚6时,在经历了260天的密闭飞行后,中国志愿者王跃走出“火星-500”登陆舱,成功踏上模拟火星表面,在“火星”首次留下中国人的足迹.王跃拟在“火星”表面进山地滑雪是人们喜爱的一项体育运动.一滑雪坡由AB和BC组成,AB为斜坡,BC是半径为R=5m的圆弧,圆弧与斜面相切于B点,与水平面相切于C点,如图所示.AC竖直高度差h1=9.8m,竖直如图所示,质量m=1kg.L=0.8m长的均匀矩形薄板静止在水平桌面上,其右端与桌子边缘相齐平.板与平面间的动摩擦因数为μ=0.4,现用F=5N的水平力向右推薄板,要使它翻下桌子,力特战队员从悬停在空中离地95m高的直升机上沿绳下滑进行降落训练,某特战队员和他携带的武器质量共为80kg,设特战队员用特制的手套轻握绳子时可获得200N的摩擦阻力,紧握绳子一个质量为4kg的物体静止在足够大的光滑水平地面上.从t=0开始,物体受到一个大小和方向呈周期性变化的水平力F作用,力F随时间的变化规律如图所示.则()A.t=2s时物体沿负方向运如图所示,水平桌面上一质量为2.0kg的小物块,在10N的水平拉力作用下,从桌面A端由静止开始向B端运动,2s末撤去水平拉力,物块恰能运动到桌面B端而不掉下,已知物块与桌面之如图所示,固定的光滑斜面上,有一物体P放在物体Q上,二者一道以某一初速度沿斜面向上滑行,然后滑下.上行和下滑过程中两者始终保持相对静止.下列说法中正确的是()A.上升过程如图所示,在竖直方向上A、B两物体通过劲度系数为k的轻质弹簧相连,A放在水平地面上;B、C两物体通过细绳绕过轻质定滑轮相连,C放在固定的光滑斜面上.用手拿住C,使细线刚刚如图所示,在竖直平面内放置一长为L、内壁光滑的薄壁玻璃管,在玻璃管的a端放置一个直径比玻璃管直径略小的小球,小球带电荷量为-q、质量为m.玻璃管右边的空间存在着匀强电场光滑的L型木板P放在固定光滑斜面上,轻质弹簧一端固定在木板上,另一端与置于木板上表面的滑块Q相连,如图所示.若P、Q一起沿斜面加速下滑,不计空气阻力.则木板P的受力个数为特警队员从悬停在空中离地235米高的直升机上沿绳下滑进行降落训练,某特警队员和他携带的武器质量共为80kg,设特警队员用特制的手套轻握绳子时可获得200N的摩擦阻力,紧握绳让钢球从某一高度竖直落下进入液体中,图中表示的是闪光照相机拍摄的钢球在液体中的不同位置.则下列说法正确的是()A.钢球进入液体中先做加速运动,后做减速运动B.钢球进入液如图所示,用轻绳系住质量为m的小球,使小球在竖直平面内绕点O做圆周运动.小球做圆周运动的半径为L.小球在最高点A的速度大小为v.求:(1)小球在最高点A时,绳子上的拉力大小;如图所示,粗糙平台高出水平地面h=1.25m,质量为m=1kg的物体(视作质点)静止在与平台右端B点相距L=2.5m的A点,物体与平台之间的动摩擦因数为μ=0.4.现对物体施加水平向右的如图所示,在y≤53×10-2m的空间有垂直纸面向里的匀强磁场,磁感应强度B=4×10-3T,在y≤0空间同时存在沿y轴负方向的匀强电场,电场强度E=403V/m.一个质量m=6.4×10-27kg、带电量质量相等的甲、乙两车从某点同时开始沿直线同方向运动,甲以一定的功率加速,乙做匀加速运动.经过t时间,甲、乙速度相同,设两车所受阻力相等且为恒力,则()A.t时刻甲车一定某滑雪赛道AB、CD段可看成倾角θ=370的斜面,两斜面与装置间的动摩擦因数相同,AB、CD间有一段小圆弧相连(圆弧长度可忽略,人经圆弧轨道时机械能损失忽略不计)如图,他从静止如图,在竖直面内的坐标系xoy中,x轴上方存在竖直向下的匀强电场,电场强度E=12N/C,在x轴下方存在垂直纸面向里的匀强磁场,磁感应强度B=2T,一带电量为q=+3×10-4c、质量为m起重机的吊钩用竖直向上的力F吊起质量为m的物体,使物体以加速度a竖直向上做匀加速直线运动,不计空气阻力,下列推理正确的是()A.如果力大小变为2F,质量不变,则加速度变为如图所示,ABCDE是由三部分光滑轨道平滑连接在一起组成的,AB为水平轨道,BCD是半径为R的半圆弧轨道,DE是半径为2R的圆弧轨道,BCD与DE相切在轨道最高点D,R=0.6m.质量为M=如图所示,在空间中存在垂直纸面向里的场强为B匀强磁场,其边界AB、CD的宽度为d,在左边界的Q点处有一质量为m,带电量为负q的粒子沿与左边界成30°的方向射入磁场,粒子重力不铁道部已于2009年12月26日正式运营武汉至广州高铁客运新干线,这条干线是目前世界上第一条平均时速高达350公里、里程最长的无砟轨道客运专线,武汉至广州的运行时间由原来的如图示,物体A、B通过细绳及轻质弹簧连接在轻滑轮两侧,物体A、B的质量分别为m、2m,开始时细绳伸直,用手托着物体A使弹簧处于原长且A与地面的距离为h,物体B静止在地面上.放在如图所示的xoy坐标系中,y>0的区域内存在着沿y轴正方向、场强为E的匀强电场,y<0的区域内存在着垂直纸面向里、磁感应强度为B的匀强磁场.一带电粒子从y轴上的P(0,h)点以沿如图所示,光滑水平面上放置一斜面体A,在其粗糙斜面上静止一物块B,开始时A处于静止.从某时刻开始,一个从0逐渐增大的水平向左的力F作用在A上,使A和B一起向左做变加速直线轻质活塞将一定质量的气体封闭在薄壁气缸内,活塞横截面积为S,气缸质量为m.开始时活塞处于气缸正中间,现用竖直向上的力提活塞使得气缸被提离地面,如图所示.当气缸内气体的“太极球”是近年来在广大市民中较流行的一种健身器材.做该项运动时,健身者半马步站立,手持太极球拍,拍上放一橡胶太极球,健身者舞动球拍时,球却不会掉落地上.现将太极球简
牛顿第二定律的试题200
如图所示,一名消防队员在模拟演习训练中,沿着竖立在地面上的钢管往下滑.已知这名消防队员的质量为60kg他从钢管顶端由静止开始先匀加速再匀减速下滑到达地面时速度恰好为零如图所示的ABC是游乐场中的滑道模型,它位于竖直平面内,BC滑道水平,AB与水平面夹角为θ,DE是水面,AB=BC=CD=l.滑船(可视为小滑块)从A点由静止开始下滑,滑船与AB滑道间的动如图甲,两光滑的平行导轨MON与PO′Q,其中ON、O′Q部分是水平的,倾斜部分与水平部分用光滑圆弧连接,QN两点间连电阻R,导轨间距为L.水平导轨处有两个匀强磁场区域Ⅰ、Ⅱ(分别是如图是某中学科技小组制作的利用太阳能驱动小车的装置.当太阳光照射到小车上方的光电板,光电板中产生的电流经电动机带动小车前进.若小车在平直的水泥路上从静止开始加速行驶绝缘水平面上固定一正电荷Q,另一质量为m、电荷量为-q的滑块从a点以初速度υ0沿水平面向Q运动,到达b点时速度为零.已知a、b距离为s,滑块与水平面间的动摩擦因数为μ,重力加速一个物体在倾角为30°的斜面上滑下,若斜面顶端为坐标的原点,其位移与时间的关系为s=(33.5t2+3t+2)cm,式中t的单位为s,则物体下滑的初速度为______m/s,物体与斜面间的动摩一个质量为0.3kg的物体沿水平面做直线运动,如图所示,图线a表示物体受水平拉力时的v-t图象,图线b表示撤去水平拉力后物体继续运动的v-t图象,下列说法中正确的是()A.水平拉如图所示,半径R=2m的四分之一粗糙圆弧轨道AB置于竖直平面内,轨道的B端切线水平,且距水平地面高度为h=1.25m.现将一质量m=0.2kg的小滑块(可视为质点)从A点由静止释放,小两个完全相同的物体A、B,质量均为m=0.8kg,在同一粗糙水平面上以相同的初速度从同一位置开始运动.图中的两条直线分别表示A物体受到水平拉力F作用和B物体不受拉力作用的v-t雨点在下落过程中受到的空气阻力与雨点的横截面积S成正比,与雨点下落的速度v的平方成正比,即f=kSv2(其中k为比例系数).雨点接近地面时近似看做匀速直线运动,重力加速度为g如图1,A、B是叠放在光滑水平面上的两物块,水平力F作用在物块B上,A、B一起从静止开始做直线运动(无相对滑动),F随时间t变化关系如图2所示.下列说法正确的是()A.物块A所受摩如图所示,光滑固定的竖直杆上套有一个质量m=0.4kg的小物块A,不可伸长的轻质细绳通过固定在墙壁上、大小可忽略的定滑轮D,连接物块A和小物块B,虚线CD水平,间距d=1.2m,如图所示,倾角为θ的光滑斜面上放有两个质量分别为m1和m2的带电小球A、B,且m1=2m2,相距L.当开始释放时,B球刚好处于静止状态,则A球的初始加速度为______;若经过一段时间起跳摸高是学生常进行的一项活动,竖直起跳的时间和平均蹬地力的大小能够反映学生在起跳摸高中的素质.为了测定竖直起跳的时间和蹬地力的大小,老师在地面上安装了一个压力传如图所示,可视为质点的三物块A、B、C放在倾角为θ=30°、长为L=2m的固定斜面上,三物块与斜面间的动摩擦因数均为μ=7380,A与B紧靠在一起,C紧靠在固定挡板上,其中A为不带电的如图,两质量均为m的小球,通过长为L的不可伸长轻绳水平相连,从h高处自由下落,下落过程中绳处于水平伸直状态,若下落时绳中点碰到水平放置的光滑钉子O,绳与钉作用过程中无如图所示,一对平行光滑轨道放置在水平面上,两轨道相距L=1m,两轨道之间用电阻R=2Ω连接,有一质量为m=0.5kg的导体杆静止地放在轨道上与两轨道垂直,杆及轨道的电阻皆可忽略质量为2t的汽车在平直公路上由静止开始运动,若保持牵引力恒定,则在30s内速度增大到15m/s,这时汽车刚好达到额定功率,然后保持额定输出功率不变,再运动15s达到最大速度20如图所示,正方形线框abcd放在光滑绝缘的水平面上,其边长L=0.5m、质量m=0.5kg、电阻R=0.5Ω,M、N分别为线框ad、bc边的中点.图示两个虚线区域内分别有竖直向下和向上的匀一小物体从倾角θ的固定长斜面顶端由静止开始自由下滑,已知斜面与物体间的动摩擦因数与物体离开斜面顶端距离x之间满足μ=kx(k为已知常量),则物体刚下滑时加速度______,下滑如图所示,质量mA=1.Okg的物块A放在水平固定桌面上,由跨过光滑小定滑轮的轻绳与质量mB=1.5kg的物块B相连.轻绳拉直时用手托住物块B,使其静止在距地面h=0.6m的高度处,此时如图所示,一质量为m的氢气球用细绳拴在地面上,地面上空风速水平且恒为v0,球静止时绳与水平方向夹角为α.某时刻绳突然断裂,氢气球飞走.已知氢气球在空气中运动时所受到的阻(1)如图所示,线圈abcd的面积是0.05m2,共100匝;线圈总电阻r=1Ω,外接电阻R=9Ω,匀强磁场的磁感应强度B=1πT,线圈以角速度ω=100πrad/s匀速转动.①若线圈经图示位置时开始计跳伞运动员从金茂大厦的八十九层的345米高处飞身跃下,跳落到大厦西侧的草坪上.当降落伞全部打开时,伞和运动员所受的空气阻力大小跟下落速度的平方成正比,即f=kv2,已知比如图所示,质量为M的铁箱内装有质量为m的货物.以某一初速度向上竖直抛出,上升的最大高度为H,下落过程的加速度大小为a,重力加速度为g,铁箱运动过程受到的空气阻力大小不变如图所示,BCDG是光滑绝缘的34圆形轨道,位于竖直平面内,轨道半径为R,下端与水平绝缘轨道在B点平滑连接,整个轨道处在水平向左的匀强电场中.现有一质量为m、带正电的小滑块如图所示,宽度L=0.4m的足够长金属导轨水平固定在磁感强度B=0.5T范围足够大的匀强磁场中,磁场方向垂直导轨平面向上.现用一平行于导轨的牵引力F牵引一根质量m=0.2kg,电阻如图所示.一簇质量均为m、电量均为q的离子,在P点以同一速率v沿xoy上半平面中的各个方向射出,在P点左侧靠近P点处有一竖直放置的挡板.现加一垂直于xoy平面的磁感应强度为B的如图一光滑斜面固定在水平地面上,用平行于斜面的力F拉质量为m的物体,可使它匀速向上滑动;若改用大小为3F的力,仍平行斜面向上拉该物体,让物体从底部由静止开始运动,已知在水平面上做匀加速直线运动的物体,在水平方向上受到拉力和阻力的作用.如果使物体的加速度变为原来的2倍.下列方法中可以实现的是()A.将拉力增大到原来的2倍B.将阻力减少到原如图所示,很长的光滑磁棒竖直固定在水平面上,在它的侧面有均匀向外的辐射状的磁场.磁棒外套有一个质量均匀的圆形线圈,质量为m,半径为R,电阻为r,线圈所在磁场处的磁感应如图甲所示,竖直放置的金属板A、B中间开有小孔,小孔的连线沿水平放置的金属板C、D的中间线,粒子源P可以间断地产生质量为m、电荷量为q的带正电粒子(初速不计),粒子在A、B如图所示,宽度为L的金属框架竖直固定在绝缘地面上,框架的上端接有一特殊的电子元件,如果将其作用等效成一个电阻,则其阻值与其两端所加的电压成正比,即等效电阻R=kU,式如图所示,是某跳台滑雪的雪道示意简化图,高台滑雪运动员经过一段竖直平面内的圆弧后,从圆弧所在圆的最低点O水平飞出,圆弧半径R=10m.一滑雪运动员连同滑雪板的总质量为50DIS实验是利用现代信息技术进行的实验.两组学生用DIS实验系统研究用轻绳拴着的小球在竖直平面内的圆周运动,实验装置如图甲所示.(1)第一组同学通过数据采集器采集小球运动半牛顿运动定律是经典力学的基础.以下对牛顿运动定律的理解中正确的是()A.牛顿第一定律指出物体只有保持匀速直线运动状态或静止状态时才具有惯性B.牛顿第二定律指出物体加速度如图所示,长为L=4m轻杆可绕其中点O自由转动,初始时质量M=4kg的小物体通过细绳挂在杆的右端,质量m=5kg的小物体通过细绳挂在杆的左端,为使轻杆水平静止,在距左端1m的P处将如图所示,粗糙水平轨道AB与竖直平面内的光滑半圆轨道BC在B处平滑连接,B、C分别为半圆轨道的最低点和最高点.一个质量m=0.1kg的小物体P被一根细线拴住放在水平轨道上,细线如图所示的装置可以测量小车在水平路面上做匀变速直线运动的加速度.该装置是在车箱前、后壁各安装一个压力传感器a和b,中间用两根相同的轻质弹簧压着一个质量为2.0kg的滑块如图甲所示,用n条相同材料制成的橡皮条彼此平行地沿水平方向拉一质量为m的物块.改变橡皮条条数进行多次实验,保证每次橡皮条的伸长量均相同,则物块的加速度a与所用橡皮条的一个物体置于光滑的水平面上,受到6N水平拉力作用从静止出发,经2s,物体的位移为24m.(g取10m/s2)求:(1)物体运动的加速度是多大?(2)物体的质量是多大?(3)若改用同样大小的力如图所示,叠放在一起的A、B两绝缘小物块放在水平向右的匀强电场中,其中B带正电q而A不带电,它们一切沿绝缘水平面以某一速度匀速运动.现突然使B带电量消失,同时A带上正电q如图所示,将质量为2m、长度为L的木板静止地放在光滑水平面上,一质量为m的金属块(可视为质点),以水平初速度v0由木板左端恰能滑至木板的右端并与木板相对静止,金属块在运动如图所示,ABC是光滑轨道,BC段是半径为r的半圆弧,BC直径竖直.今让一小球从A点(与C点在同一水平线上)由静止开始沿轨道ABC运动,则()A.小球恰能到达C点B.小球不可能到达C点C如图甲所示,物体原来静止在水平面上,用一水平力F拉物体,在F从0开始逐渐增大的过程中,物体先静止后又做变加速运动,其加速度a随外力F变化的图象如图乙所示.根据图乙中所标如图所示,AB、BC均为轻杆,处在同一竖直平面内,AB杆高为h.A、B、C三处均用铰接连接,其中A、C两点在同一水平面上,BC杆与水平面夹角为30°.一个质量为m的小球穿在BC杆上,并如图所示,一同定光滑杆与水平方向夹角θ,将一质量m1的小环套在杆上,通过轻绳悬挂一个质量为m2的小球,静止释放后,环与小球保持相对静止以相同的加速度a-起下滑,此时绳子如图所示,斜劈静止在水平地面上,有一物体沿斜劈表面向下运动,重力做的功与克服力F做的功相等.则下列判断中正确的是()A.物体可能加速下滑B.物体可能受三个力作用,且合力为在光滑绝缘的水平面上,长为2L的绝缘轻质细杆的两端各连接一个质量均为m的带电小球A和B,A球的带电量为+2q,B球的带电量为-3q(可视为质点,也不考虑两者间相互作用的库仑力)汽车发动机的功率为60kW,若汽车总质量为5×103kg,在水平路面上行驶时,所受阻力大小恒为5×103N,试求:(1)汽车所能达到的最大速度;(2)若汽车以0.5m/s2的加速度由静止开始做如图所示,两足够长的平行光滑的金属导轨MN、PQ相距为,导轨平面与水平面的夹角=30°,导轨电阻不计,磁感应强度为B的匀强磁场垂直于导轨平面向上.长为的金属棒垂直于MN、PQ放如图甲所示,MN、PQ为水平放置的足够长的平行光滑导轨,导轨间距L为0.5m,导轨左端连接一个2Ω的电阻R,将一根质量m为0.4kg的金属棒cd垂直地放置导轨上,且与导轨接触良好,图是一种过山车的简易模型,它由水平轨道和在竖直平面内的二个圆形轨道组成,B、C分别是二个圆形轨道的最低点,BC间距L=12.5m,第一圆形轨道半径R1=1.4m.一个质量为m=1.0质量为m0的足够长的木板放在光滑水平地面上,在木板的上表面的右端放一质量为m的小金属块(可看成质点),如图所示,木板上表面的A点右侧是光滑的,A点到木板右端距离为L,A点如图所示,一长为L的薄壁玻璃管放置在水平面上,在玻璃管的a端放置一个直径比玻璃管直径略小的小球,小球带电荷量为-q、质量为m.玻璃管右边的空间存在方向竖直向上、磁感应强炎炎的夏日,汽车轮胎在高温环境下使用开始变得不安分起来,爆胎事故时有发生.如图所示,汽车在炎热的夏天若沿起伏不平的曲型路面行驶,其中最容易发生爆胎的点是(假设在行驶某学生骑着自行车(可视为质点)从倾角为θ=37°的斜坡AB滑下,然后在水平地面BC上滑行一段距离后停下,整个过程中该学生始终未蹬脚踏板,如图甲所示.自行车后架上固定一个装有墨如图1所示,在真空中足够大的绝缘水平地面上,一个质量为m=0.2kg,带电量为q=+2.0×10-6C的小物块处于静止状态,小物块与地面间的动摩擦因数μ=0.1.从t=0时刻开始,空间加上用水平力F拉着一物体在水平地面上做匀速运动,从某时刻起力F随时间均匀减小,物体所受的摩擦力f随时间t变化如图中实线所示.下列说法正确的是()A.F是从t1时刻开始减小的,t2时如图所示,质量为m的球置于斜面上,被一个竖直挡板挡住.现用一个力F拉斜面,使斜面在水平面上做加速度为a的匀加速直线运动,忽略一切摩擦,以下说法正确的是()A.若加速度足够奥运会已经成功的降下帷幕,“绿色奥运”是2008年北京奥运会的三大理念之一,奥组委在各比赛场馆使用新型节能环保电动车,奥运会500名志愿者担任了司机,负责接送比赛选手和运一物块在粗糙水平面上,受到的水平拉力F随时间t变化如图(a)所示,速度v随时间t变化如图(b)所示(g=10m/s2).求:(1)物块质量m.(2)物块与水平面间的动摩擦因数μ.如图(a)所示,重10N的、粗细均匀的金属杆可以绕O点在竖直平面内自由转动,一拉力、位移传感器竖直作用在杆上,并能使杆始终保持水平平衡.该传感器显示其拉力F与作用点到O点距如图所示,放在水平地面(粗糙)上的光滑直轨道AB和半圆形的光滑轨道CED处于同一竖直平面内,两轨道与水平地面平滑连接,其端点B和C相距1.2m,半圆轨道两端点的连线CD与地面垂如图所示,在真空区域内,有宽度为L的匀强磁场,磁感应强度为B,磁场方向垂直纸面向里,MN、PQ是磁场的边界.质量为m,带电量为-q的粒子,先后两次沿着与MN夹角为θ(0<θ<90°)的用同种材料制成倾角37°的斜面和长水平面,斜面长3.15m且固定,一小物块从斜面顶端以沿斜面向下的初速度v0开始自由下滑,当v0=2.4m/s时,经过2.0s后小物块停在斜面上.多次如图所示,劲度系数为k的弹簧下悬挂一个质量为m的重物,处于静止状态,手托重物使之缓慢上移,直到弹簧恢复原长,然后放手使重物从静止开始下落,重物下落过程中的最大速度为物体在一外力作用下做匀加速直线运动,已知第2s末的速度是6m/s,第3s末的速度是8m/s,物体的质量为2kg,则下列说法中正确的是()A.物体在零时刻的速度是4m/sB.物体的受到的合如图所示,绝缘光滑的半圆轨道位于竖直平面,竖直向下的匀强电场正穿过其中,在轨道的上缘有一个质量为m,带电荷量为+q的小球,由静止开始沿轨道运动.下列说法正确的是()A.小如图所示,倾角为37°的粗糙斜面固定于水平地面上,质量m=2kg的木块从斜面底端以4m/s的初速度滑上斜面,木块与斜面间的动摩擦因数为0.25.现规定木块初始位置重力势能为零,且如图所示,传送带以恒定速度υ=3m/s向右运动,AB长L=3.8m,质量为m=5kg的物体,无初速地放到左端A处,同时用水平恒力F=25N向右拉物体,如物体与传送带间的动摩擦因数μ=0.25如图所示,一质量为m的物体(可以看做质点),静止地放在动摩擦因素为μ水平地面上,物体的初始位置在A处,离A处2R的B处固定放置一竖直光滑半圆形轨道,轨道的半径为R,最低点与如图所示,在坐标系xOy内有一半径为a的圆形区域,圆心坐标为O1(a,0),圆内分布有垂直纸面向里的匀强磁场.在直线y=a的上方和直线x=2a的左侧区域内,有一沿y轴负方向的匀强电如图所示,平板小车沿水平地面始终以加速度a做匀加速直线运动.当小车速度增至v时,将一小物块无初速地放于平板小车的A端(小车的加速度保持不变).物块与小车间的动摩擦因数为如图所示,一长度为R的轻质细绳与质量为m的小球相连,悬挂于O点.现将小球从水平位置P点自由释放.求:(1)当细绳摆到竖直位置时小球的速度大小;(2)当细绳摆到竖直位置时此时小如图所示,在0≤x≤a、o≤y≤a2范围内有垂直手xy平面向外的匀强磁场,磁感应强度大小为B.坐标原点0处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度如图所示,空间有一垂直纸面向外的磁感应强度为0.5T的匀强磁场,一质量为0.2kg且足够长的绝缘木板静止在光滑水平面上,在木板左端放置一质量为0.10kg、带电荷量q=+0.2C的下表列出某种型号轿车的部分数据,根据表中数据可知:该车以最大功率和最高速度在水平路面上行驶时所受阻力的大小是______N;假定轿车所受阻力恒定,若轿车保持最大功率行使,如图(a)所示,水平面上有两根很长的平行导轨,间距为L,导轨间有竖直方向等距离间隔的匀强磁场B1和B2,B1和B2的方向相反,大小相等,即B1=B2=B.导轨上有矩形金属框abcd,其总质量为m的物体放在粗糙的水平地面上,物体与地面之间的动摩擦因数为μ,现在物体在一水平拉力的作用下从静止开始运动,其运动的v-t图象如图所示.下列关于小物体运动过程分析正某同学在探究力与物体运动关系的实验中,曾尝试用一质量为m1的弹簧测力计拉动质量为m,的物体向上做匀加速运动,其操作情况如图所示.如果该同学对弹簧测力计施加竖直向上的拉小明跟着爸爸荡秋千的情景如图所示.设摆绳长为3m,悬点在横梁上,小明连同底板质量共为60kg.开始时小明在爸爸的外力作用下使摆绳与竖直方向成37°角处于静止状态.某时刻爸爸放(1)用频率为v0的光照射大量处于基态的氢原子,在所发射的光谱中仅能观测到频率分别为v1、v2、v3的三条谱线,且v3>v2>v1,则______.(填入正确选项前的字母)A.v0<v1B.v3=v2+v1如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电量为+q,质量为m(不计重力),从点P经电场加速后,从小如图所示,在一足够长的水平小车上,有质量为m1和m2的两个物块(m1>m2),随车一起向右匀速运动,设两滑块与小车之间的动摩擦力因数分别为μ1和μ2,其它阻力不计,当车停止时,(1)某试验小组利用拉力传感器来验证牛顿第二定律,实验装置如图.他们将拉力传感器固定在小车上,用不可伸长的细线将其通过一个定滑轮与钩码相连,用拉力传感器记录小车受到的如图所示为某娱乐场的滑道示意图,其中AB为曲面滑道,BC为水平滑道,水平滑道BC与半径为1.6m的14圆弧滑道CD相切,DE为放在水平地面上的海绵垫.某人从坡顶滑下,经过高度差为一质量为2Kg木块放在水平面上,木块与水平面的动摩擦因数u=0.5,现在斜向上的拉力F作用下从静止开始做匀加速直线运动,10秒后撤去拉力F,木块便减速到最后静止.已知F=10N,质量为M的汽车以恒定功率P在平直公路上行驶,汽车所受阻力不变,汽车匀速行驶时速度为v1,则当汽车速度为v2时,汽车的加速度大小为()A.P(v1-v2)Mv1v2B.Pv1v2M(v1-v2)C.PMv1D某探究学习小组的同学欲探究“牛顿第二定律”,他们在实验室组装了一套如图1所示的装置,要完成该项实验,则:(1)实验时为了保证滑块受到的合力与沙和沙桶的总重力大小基本相等如图,水平轨道AB与半径为R=1.0m的竖直半圆形光滑轨道BC相切于B点.可视为质点的a、b两个小滑块质量ma=2mb=2kg,原来静止于水平轨道A处,AB长为L=3.2m,两滑块在足够大的内如图所示,斜面除AB段粗糙外,其余部分都是光滑的,一个物体从顶点滑下,经过A、C两点时的速度相等,且AB=BC,(物体与AB段动摩擦因数处处相等,斜面与水平面始终相对静止),如图所示,一根轻弹簧左端固定,右端系一物块,物块置于摩擦不能忽略的水平面上.现将弹簧压缩到A点后释放,物块运动到B点时速度变为零,O为弹簧处于自然长度时的位置,AB距离如图甲所示,M和N是相互平行的金属板,OO1O2为中线,O1为板间区域的中点,P是足够大的荧光屏带电粒子连续地从O点沿OO1方向射入两板间.带电粒子的重力不计.(1)若只在两板间加引体向上运动是同学们经常做的一项健身运动.如图所示,质量为m的某同学两手正握单杠,开始时,手臂完全伸直,身体呈自然悬垂状态,此时他的下颚距单杠面的高度为H,然后他用如图所示,足够长的U型金属框架放置在绝缘斜面上,斜面倾角30°,框架的宽度l=1.0m、质量M=1.0kg.导体棒ab垂直放在框架上,且可以无摩擦的运动.设不同质量的导体棒ab放置时如图(a)所示,一物体沿倾角为θ=370的固定粗糙斜面由静止开始运动,同时受到水平向右的风力作用,水平风力的大小与风速成正比.物体在斜面上运动的加速度a与风速v的关系如图(b如图所示的两平行金属板间,存在相互垂直的匀强磁场和匀强电场,磁场的磁感应强度占B1=0.40T,方向垂直纸面向里,电场强度E=2.0×105V/m,PQ为板间中线.紧靠平行板右侧边缘航模兴趣小组设计出一架遥控飞行器,其质量m=0.5㎏,动力系统提供的恒定升力F=8N.试飞时,飞行器从地面由静止开始竖直上升.(设飞行器飞行时所受的阻力大小不变,g取10m/s2.)如图所示,物体A放在足够长的木板B上,木板B静置于水平面.t=0时,电动机通过水平细绳以恒力F拉木板B,使它做初速度为零、加速度aB=1.0m/s2的匀加速直线运动.已知A的质量mA和
牛顿第二定律的试题300
如图所示,宽度L=1.0m的光滑金属框架MNPQ固定于水平面内,以M为坐标原点,MN方向为x轴正方向建立坐标系,x、y轴与虚线所包围的有界匀强磁场磁感应强度大小B=0.5T,方向竖直在一次消防逃生演练中,队员从倾斜直滑道AB的顶端A由静止滑下,经B点后水平滑出,最后落在水平地面的护垫上(不计护垫厚度的影响).已知A、B离水平地面的高度分别为H=6.2m、h如图所示,斜面体M放置在水平地面上,位于斜面上的物块m受到沿斜面向上的推力F作用.设物块与斜面之间的摩擦力大小为F1,斜面与地面之间的摩擦力大小为F2.增大推力F,斜面体始如图所示,劲度系数为K的轻质弹簧,一端系在竖直放置的半径为R的圆环顶点P,另一端系一质量为m的小球,小球穿在圆环上作无摩擦的运动.设开始时小球置于A点,弹簧处于自然状态如图所示,斜面的倾角θ为37°,一物块从斜面A点由静止释放.物块与水平面和斜面的动摩擦因数μ均为0.2,AB=2.2m,不计物块滑至B点时由于碰撞的能量损失,取g=10m/s2.(sin37°=如图所示,在y轴右侧平面内存在方向向里的匀强磁场,磁感应强度大小B=0.5T,坐标原点o有一放射源,可以向y轴右侧平面沿各个方向放射比荷为mq=2.5×10-7Kg/C的正离子,这些离如图所示,质量均为m的A、B两球之间系着一根不计质量的弹簧,放在光滑的水平面上,A球紧靠竖直墙壁,今用水平力F将B球向左推压弹簧,平衡后,突然将F撤去,在这瞬间()①B球的物理学习过程中,我们经常借助图象分析某个物理量的变化趋势及其变化快慢,如图1所示,表示了x增加时,y缓慢变大.若令x轴和y轴分别表示其它的物理量,则该图象又可以反映在某如图,在x轴下方有匀强磁场,磁感应强度大小为B,方向垂直于xy平面向外.P是y轴上距原点为h的一点,N0为x轴上距原点为a的一点.A是一块平行于x轴的挡板,与x轴的距离为h2,A的在建筑装修中,工人用质量为5.0kg的磨石A对地面和斜壁进行打磨,已知A与地面、A与斜壁之间的动摩擦因数μ均相同.(g取10m/s2)(1)当A受到水平方向的推力F1=25N打磨地面时,A恰如图所示,一倾角为37°的斜面固定在水平地面上,质量为1千克的物体在平行于斜面向上的恒力F作用下,从斜面的底端A点由静止开始运动,到达B点时立即撤去拉力F.此后,物体到达如图,质量M=1kg的木板静止在水平面上,质量m=1kg、大小可以忽略的铁块静止在木板的右端.设最大摩擦力等于滑动摩擦力,已知木板与地面间的动摩擦因数μ1=0.1,铁块与木板之间如图所示,质量为M、倾角为θ的斜面放在粗糙水平面上,质量为m的物体在斜面上恰能匀速下滑.现加上如图所示的沿斜面向下的力F,使物体在斜面上加速下滑,则此时地面对斜面的支如图甲所示,质量为m=1kg的物体置于倾角θ=37°的固定粗糙斜面上.对物体施以平行于斜面向上的恒定拉力F,t1=1s时撤去拉力,物体运动的部分v-t图象如图乙所示.求:(g=10m/s2)(1)如图所示,固定不动的水平平台长L=1.25m,高h=0.80m,货物(可以视为质点)质量m=4.0kg静止在水平平台的左端,商场工作人员用F=24N的水平力把货物施向右拉动一段距离后撤去一架总质量为M的飞机,以速率v在空中的水平面上做半径为r的匀速圆周运动,重力加速度为g,则空气对飞机的作用力大小等于()A.MgB.Mv2rC.Mg2+(v2r)2D.Mg2-(v2r)2(1)某同学用图1所示装置做“验证牛顿第二定律”实验.①该同学从打出的纸带上比较清晰的点迹起,每5个点迹取一个计数点(即相邻的两个计数点间都有4个未画出的点迹),标出了A、B、如图所示装置可用来分析气体原子的组成.首先使待研究气体进入电离室A,在此气体被电离成等离子体(待研究气体的等离子体由含有一价正离子和电荷量为e的电子组成,整体显电性)某同学探究小球沿光滑斜面顶端下滑至底端的运动规律,现将两质量相同的小球同时从斜面的顶端释放,在甲、乙图的两种斜面中,通过一定的判断分析,你可以得到的正确结论是()A如图甲所示,两根足够长的光滑平行金属导轨相距为L=0.40m,导轨平面与水平面成θ=30?角,上端和下端通过导线分别连接阻值R1=R2=1.2Ω的电阻,质量为m=0.20kg、阻值为r=0.2在2010年温哥华冬奥会单板滑雪女子U型池决赛中,我国小将刘佳宇名列第四名.虽然无缘奖牌,但刘佳宇已经创造中国单板滑雪在冬奥会上的最好成绩.单板滑雪U型池的比赛场地截面示如图所示,在倾角θ=37°的足够长的光滑斜面上,质量都为M=2kg的长方体板A和B之间夹有少许炸药,在B的上表面左端叠放有一质量m=1kg的物体C(可视为质点),C与B之间的动摩擦因数如图所示,水平传送带AB长l=1.3m,距离地面的高度h=0.20m,木块与地面之间的动摩擦因数μ0=0.20.质量为M=1.0kg的木块随传送带一起以v=2.0m/s的速度向左匀速运动(传送带的梭梭板(滑板)是儿童喜欢的游乐项目,如图所示,滑板的竖直高度AB为3m,斜面长AC为5m,斜面与水平部分由一小段圆弧平滑的连接.一个质量m为20kg的小孩从滑板顶端由静止开始滑下如图所示,一块长为L、质量m的扁平均匀规则木板通过装有传送带的光滑斜面输送.斜面与传送带靠在一起连成一直线,与水平方向夹角θ,传送带以较大的恒定速率转动,传送方向向上如图所示,在X>0,Y>0的空间中存在两个以水平面MN为界,磁感应强度大小均为B,方向相反的匀强磁场.一根上端开口、内壁光滑的绝缘细管,长为L,其底部有一质量为m、电量为+q的如图所示,一内壁光滑的细管弯成半径R=0.4m的半圆形轨道CD,竖直放置,其轨道内径略大于小球直径,水平轨道与竖直半圆轨道在C点连接完好.置于水平轨道上的弹簧左端与竖直墙如图所示,倾角θ=37°的斜面上有一个质量m=3.5kg的小物体.用大小F=5N的水平拉力从静止起拉动物体,t=7s后,经过位移S=5m到达斜面底端.(sin37°=0.6,cos37°=0.8)(1)物体的加在水平地面上方的足够大的真空室内存在着匀强电场和匀强磁场共存的区域,且电场与磁场的方向始终平行,在距离水平地面的某一高度处,有一个带电量为q、质量为m的带负电的质点一宇宙人在太空(万有引力可以忽略不计)玩垒球.如图所示,辽阔的太空球场半侧为匀强电场,另半侧为匀强磁场,电场和磁场的分界面为垂直纸面的平面,电场方向与界面垂直,磁场在倾角为θ足够长的光滑斜面上,存在着两个磁感应强度相等的匀强磁场,磁场方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L,如图所示.一个质量为m、电阻为R、边长也为如图所示,水平x轴是匀强电场的上边界线,xoy平面内的竖直线PQ是匀强电场、匀强磁场的分界线,匀强电场的方向竖直向上,匀强磁场的方向垂直于xoy平面向里(磁感应强度大小B未如图所示,一质量M=2kg的足够长的长木板在光滑的水平面上以vo=3m/s的速度向右匀速运动,某时刻一质量m=lkg的物体无初速的放在长木板的右端,物体与木板的动摩擦因数μ=0.5,如图所示,长为5.8m的倾斜传送带AB沿逆时针方向转动,速度大小恒为4m/s.现将一物体(可视为质点)轻轻地放在传送带顶端A,使其由静止开始运动到传送带底端B.已知物体与传送带一个质量m=1kg的物体静止在水平地面上,与一根劲度系数k=1000N/m的轻弹簧相连.当在弹簧的另一端施加一个竖直向上的外力时,弹簧的伸长量x=0.011m(在弹性限度内),物体向上做图为洗衣机脱水制动示意图.脱水桶的半径为20cm,正常工作时以每分钟1200转高速旋转.脱水后衣服可视为均匀地紧贴脱水桶壁上,且当衣服和桶的总质量为3kg时,测得从打开脱水桶如图所示,质量为m的物块在粗糙斜面上,受到竖直向下的力F的作用,沿斜面向下以加速度a做匀加速运动.()A.若撤去F,则物块可能沿斜面匀速下滑B.若撤去F,则物块可能沿斜面减速如图所示,竖直向上的匀强电场中,绝缘轻质弹簧直立于地面上,上面放一个质量为m,带正电的小球,小球与弹簧不连接,加外力F,将小球下压到某位置静止,现撤去F,小球从静止如图所示,xoy为竖直平面直角坐标系,MN为第Ⅰ、第Ⅲ象限的平分线,在MN的左侧有垂直于坐标平面水平向里的匀强磁场,磁感应强度B=0.1T,在MN右侧有水平向右的匀强电场,电场强如图所示,有些地区的铁路由于弯多、弯急,路况复杂,依靠现有车型提速的难度较大,铁路部门通过引进摆式列车来解决转弯半径过小造成的离心问题,摆式列车是集电脑、自动控制如图所示,光滑斜面的倾角α=30°,在斜面上放置一矩形线框abcd,ab边的边长l1=lm,bc边的边长l2=0.6m,线框的质量m=1kg,电阻R=0.1Ω,线框受到沿光滑斜面向上的恒力F的作用如图所示,长度L=1.0m的长木板A静止在水平地面上,A的质量m1=1.0kg,A与水平地面之间的动摩擦因数μ1=0.04.小物块B(可视为质点)以υ0=2.0m/s的初速度滑上A的左端,B的质量如图所示,在一次消防演习中,消防员练习使用挂钩从高空沿滑杆由静止滑下,滑杆由AO、OB两段直杆通过光滑转轴连接于O处,现将消防队员和挂钩均理想化为质点,且通过O点的瞬间如图所示,空间有磁感应强度B=0.6T的匀强磁场,有一α粒子源在坐标原点处,以相同大小的速度沿不同方向向第四象限发射α粒子,在x坐标轴上方16cm处有一足够大的挡板,已知α粒如图所示,从阴极K发射的热电子(初速度不计)质量为m、电量为e,通过电压U加速后,垂直进入磁感应强度为B、宽为L的匀强磁场(磁场的上下区域足够大)中.求:(1)电子进入磁场时的如图,ABC为绝缘轨道,AB部分是半径R=40cm的光滑半圆轨道,P是半圆轨道的中点,BC部分水平,整个轨道处于E=1×103V/m的水平向左的匀强电场中,有一小滑块质量m=40g,带电量q=如图所示,带正电物体A在固定的绝缘斜面上下滑,若在斜面上方所在空间加一个竖直向下的匀强电场,且电场强度E随时间t均匀增加,则下列说法正确的是()A.若A在无电场时是匀速运采用如图所示装置可以粗略验证向心力的表示式.具体做法是,细线下面悬挂一个钢球,细线上端固定在铁架台上,将白纸置于水平桌面上,在白纸上画好一个正圆,使钢球静止时正好在一种叫做“蹦极跳”的运动中,质量为m的游戏者身系一根长为L、弹性优良的轻质柔软的橡皮绳,从悬点由静止开始下落1.5L时达到最低点,若不计空气阻力,则在弹性绳从原长达最一平板车质量M=50kg,停在水平路面上,车身平板离地面高h=1.25m.一质量m=10kg的小物块置于车的平板上,它到车尾的距离b=1.0m,与平板间的动摩擦因数μ=0.2,如图所示.今对如图所示,一弹丸从离地高度H=1.95m的A点以v0=8.0m/s的初速度水平射出,恰以平行于斜面的速度射入静止在固定斜面顶端C处的一木块中,并立即与木块具有相同的速度(此速度大如图所示,A是置于光滑水平面上的表面绝缘、质量m1=1kg的小车,小车的左端放置有一个可视为质点的、质量m2=2kg、电荷量q=+1×10-4C的小物块B,距小车右端s=2m处有一竖直的墙壁在足够大的水平圆木板中心处放置一小碟,小碟与木板间的动摩擦因数为µ.今使木板突然以加速度a从静止开始沿水平方向加速运动,经过时间T后,立即以同样大小的加速度匀减速同样如图,竖直平面内有一直角坐标系xOy,在x≥0的区域内有一倾角为45°的绝缘光滑斜面,斜面末端O处用一极小的平滑曲面连接,恰能使斜面末端水平.在x≤0的广泛区域内存在正交的匀强如图(甲),用一平行于斜面的力F拉静止在斜面上的物块A,当力F从0开始逐渐增大时,加速度a随外力F变化规律如图(乙),已知当地重力加速度g=10m/s2,斜面倾角为30°,则不能求出如图1所示,一个质量m=0.1kg的正方形金属框总电阻R=0.5Ω,金属框放在表面绝缘且光滑的斜面顶端(金属框上边与AA′重合),自静止开始沿斜面下滑,下滑过程中穿过一段边界与斜利用电场和磁场,可以将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用.如图所示的矩形区域ACDG(AC边足够长)中存在垂直于纸面的匀强磁场,A处有一狭无轨电车在平直公路上以15m/s的速度匀速行驶,关闭电动机后,电车做匀减速直线运动,其加速度的大小为5m/s2.已知电车的质量是4.0×103kg.求:(1)关闭电动机后电车所受的阻力大如图所示,两条形磁铁各固定在甲、乙两车上,它们能在水平面上无摩擦地运动,甲车和磁铁的总质量为1kg,乙车和磁铁的总质量为0.5kg,两磁铁N极相对,推动一下使两车在同一直电阻可忽略的光滑平行金属导轨长S=1.15m,两导轨间距L=0.75m,导轨倾角为30°,导轨上端ab接一阻值R=1.5Ω的电阻,磁感应强度B=0.8T的匀强磁场垂直轨道平面向上.阻值r=0.如图所示,间距l=0.3m的平行金属导轨a1b1c1和a2b2c2分别固定在两个竖直面内,在水平面a1b1b2a2区域内和倾角θ=37°的斜面c1b1b2c2区域内分别有磁感应强度B1=0.4T、方向竖直向如图所示:正方形绝缘光滑水平台面WXYZ边长l=1.8m,距地面h=0.8m.平行板电容器的极板CD间距d=0.1m且垂直放置于台面,C板位于边界WX上,D板与边界WZ相交处有一小孔.电容器外回旋加速器在核科学、核技术、核医学等高新技术领域得到了广泛应用,有力地推动了现代科学技术的发展.(1)当今医学成像诊断设备PET/CT堪称“现代医学高科技之冠”,它在医疗诊断如图甲所示,在倾角为θ的光滑斜面上,有一个质量为m的物体在沿斜面方向的力F的作用下由静止开始运动,物体的机械能E随位移x的变化关系如图乙所示.其中0~x1过程的图线是曲线,如图所示,物体由静止从A点沿斜面匀加速下滑,随后在水平面上作匀减速运动,最后停止于C点,已知AB=4m,BC=6m,整个运动历时10s,则物体沿AB段运动的加速度a1=______m/s2;沿如图所示,一个人用与水平方向成37°的力F=20N推一个静止在水平面上质量为2kg的物体,物体和地面间的动摩擦因数为0.1.(cos37°=0.8,sin37°=0.6)求(1)物体的加速度多大(2)3一位蹦床运动员仅在竖直方向上运动,蹦床对运动员的弹力F随时间t的变化规律通过传感器用计算机绘制出来,如图所示.设运动过程中不计空气阻力,g取10m/s2.结合图象,试求:(1)如图所示,质量m=1kg的物块,以速度v0=4m/s滑上正沿逆时针转动的水平传送带,传送带两滑轮A、B间的距离L=6m,已知传送带的速度v=2m/s,物块与传送带间的动摩擦因数μ=0.2.关质量不等但有相同动能的两物体,在摩擦系数相同的水平地面上滑行直到停止,则下列说法中正确的有()A.质量大的物体滑行距离大B.质量小的物体滑行距离大C.滑行距离与质量无关D质量为0.5kg的物体由静止开始沿光滑斜面下滑,下滑到斜面的底端后进入粗糙水平面滑行,直到静止,它的v-t图象如图所示.(g取10m/s2),求:①斜面的倾角②物体与水平面的动摩擦因如图所示,水平地面上质量为m的木块,受到大小为F、方向与水平方向成θ角的拉力作用,沿地面作匀加速直线运动.已知木块与地面之间的动摩擦因数为μ,则木块的加速度大小为()A.如图所示,倾角为45°的光滑斜面向左做匀加速运动时,质量为m的小球恰好与斜面保持静止,当斜面与小球的速度从v增加到2v的过程中()A.斜面对物体m做功为3mv22B.斜面对物体m支持(1)用图(a)所示的实验装置验证牛顿第二定律.①完成平衡摩擦力的相关内容:(i)取下砂桶,把木板不带滑轮的一端垫高,接通打点计时器电源,______(选填“静止释放”或“轻推”)小车,如图所示,将质量为2m的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m的环,环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d.现将环从与定滑轮等高的A处由静止释放在抗雪灾中,空军从很高的高空用降落伞空投救灾物资,降落伞下面的重物有500kg,降落伞在下落过程中始终遇3m/s的水平风,已知降落伞下落中受到的阻力F=kv2(k=200N•s2/m2),而如图所示的水平地面,ab段粗糙,bc段光滑.可视为质点的物体A和B紧靠在一起,静止于b处,已知A的质量为3m,B的质量为m.两物体在足够大的内力作用下突然沿水平方向左右分离,获在质量为M=1kg的小车上,竖直固定着一个质量为m=0.2kg,高h=0.05m、总电阻R=100Ω、n=100匝矩形线圈,且小车与线圈的水平长度l相同.现线圈和小车一起在光滑的水平面上运动,如图所示,长为l=2.0m、高为h=0.2m、质量为M=2kg的木板静止在水平地面上,它与地面间的动摩擦因数为μ1=0.2,在木板的左端放一质量为m=1kg的小铁块(可视为质点),铁块与木如图所示,虚线上方有场强为E的匀强电场,方向竖直向下,虚线上下都有磁感应强度为B的相同匀强磁场,方向垂直纸面向外.ab是一根长为l的绝缘细杆,沿电场线放置在虚线上方的场质量为0.3kg的物体在水平面上运动,图中的两条直线分别表示物体受水平拉力和不受水平拉力的v-t图象,则下列说法中不正确的是()A.水平拉力可能等于0.3NB.水平拉力一定等于0如图所示,一个质量为m、电荷量为q的正离子,在D处沿图示方向以一定的速度射入磁感应强度为B的匀强磁场中,此磁场方向是垂直纸面向里.结果离子正好从距A点为d的小孔C沿垂直于质量为m的人站在质量为2m的平板小车上,以共同的速度在水平地面上沿直线前行,车所受地面阻力的大小与车对地面压力的大小成正比.当车速为v0时,人从车上以相对于地面大小为v如图所示,有一个可视为质点的质量为m=1kg的小物块,从光滑平台上的A点以v0=3m/s的初速度水平抛出,到达C点时,恰好沿C点的切线方向进入固定在水平地面上的光滑圆弧轨道,最如图所示,空间存在一个半径为R0的圆形匀强磁场区域,磁场的方向垂直于纸面向里,磁感应强度的大小为B.有一个粒子源在纸面内沿各个方向以一定速率发射大量粒子,粒子的质量为一个静止的质点,仅在两个互成角度的恒力F1、F2作用下开始运动,经过一段时间后撤掉其中一个力.关于质点在撤去该力前后两个阶段中的运动情况,下列描述正确的是()A.匀加速直一物体重为50N,与水平桌面间的动摩擦因数为0.2,现如图所示加上水平力F1和F2,若F2=15N时物体做匀加速直线运动,则F1的值可能是(g=10m/s2)A.3B.2C.30D.50A、B两个木块叠放在竖直轻弹簧上,如图所示,已知mA=mB=1kg,轻弹簧的劲度系数为100N/m.若在木块A上作用一个竖直向上的力F,使木块A由静止开始以2m/s2的加速竖直向上作匀加速如图,一束电子以大小不同的速率沿图示方向飞人一正方形的匀强磁场区,对从油边离开磁场的电子,下列判断正确的是()A.从a点离开的电子速度最小B.从a点离开的电子在磁场中运动一电动小车沿如图所示的路径运动,小车从A点由静止出发,沿粗糙的水平直轨道运动L后,由B点进入半径为R的光滑竖直圆形轨道,运动一周后又从B点离开圆轨道进入水平光滑轨道BC如图所示,在等腰三角形abc区域内有垂直纸面向外的匀强磁场,d是ac上任意一点,e是bc上任意一点.大量相同的带电粒子从a点以相同方向进入磁场,由于速度大小不同,粒子从ac和如图所示为汽车在水平路面上启动过程的速度图象,oa为过原点直线,ab段表示以额定功率加速行驶阶段,bc段是与ab段相切的水平直线,则下述说法正确的是()A.O~t1时间内汽车做匀如图所示,水平面上两物体ml、m2经一细绳相连,各接触面都粗糙,在水平力F的作用下处于静止状态,则连接两物体绳中的张力可能为()A.零B.F2C.FD.大于F在地球表面上,除了两极以外,任何物体都要随地球的自转而做匀速圆周运动,当同一物体先后位于a和b两地时,下列表述正确的是()A.该物体在a、b两地所受合力都指向地心B.该物体如图所示,MN是磁感应强度为B的匀强磁场的边界.一质量为m、电荷量为q的粒子在纸面内从O点射入磁场.若粒子速度为v0,最远能落在边界上的A点.下列说法正确的有()A.若粒子落在A一质量为m的小物块沿半径为R的固定圆弧轨道下滑,滑到最低点时的速度是v,若小物块与轨道的动摩擦因数是μ,则当小物块滑到最低点时受到的摩擦力为()A.μmgB.μmv2RC.μm(g+v2R)一物块以一定的初速度沿斜面向上滑出,利用速度传感器可以在计算机屏幕上得到其速度大小随时间的变化关系图象如图所示,求(1)物块下滑的加速度大小a(2)物块向上滑行的最大距如图所示,质量为m、长为L的导体棒电阻为R,初始时静止于光滑的水平轨道上,电源电动势为E,内阻不计.匀强磁场的磁感应强度为B,其方向与轨道平面成θ角斜向上方,开关闭合后将“超市”中运送货物所用的平板车固定在水平地面上,配送员用300N的水平力拖动一箱60Kg的货物时,该货物刚好能在平板车上开始滑动;若配送员拖动平板车由静止开始加速前进,要如图甲所示,电阻不计的光滑平行金属导轨相距L=0.5m,上端连接R=0.5Ω的电阻,下端连着电阻不计的金属卡环,导轨与水平面的夹角θ=300,导轨间虚线区域存在方向垂直导轨平面如图所示,A、B两质点从同一点O分别以相同的水平速度v0沿x轴正方向抛出,A在竖直平面内运动,落地点为P1;B沿光滑斜面运动,落地点为P2,P1和P2在同一水平面上,不计阻力,则
牛顿第二定律的试题400
如图所示,B为位于水平地面上的质量为M的长方形空心盒子,盒内存在着竖直向上场强大小为E=2mgq的匀强电场.A为位于一定高度处的质量为m、带电荷量为+q的小球,且M=2m,盒子与在如图所示,x轴上方有一匀强磁场,磁感应强度的方向垂直于纸面向里,大小为B,x轴下方有一匀强电场,电场强度的大小为E,方向与y轴的夹角θ为45°且斜向上方.现有一质量为m、如图所示,由于街道上的圆形污水井盖破损,临时更换了一个稍大于井口的红色圆形平板塑料盖.为了测试因塑料盖意外移动致使盖上的物块滑落入污水井中的可能性,有人做了一个实荡秋千:也叫“打秋千”,是朝鲜族妇女喜爱的民间游戏.每逢节日聚会,人们便会看到成群结队的朝鲜族妇女,身穿鲜艳的民族服装,在人们的欢呼、叫好声中荡起了秋千,她们一会腾空质量为m的汽车以v0的速度安全驶过半径为R的凸形桥的桥顶,这时汽车对桥顶的压力是______,汽车此时所需的向心力是汽车所受支持力和______的合力,汽车能安全通过桥顶的最大行如图所示,AB为半径R=0.8m的14光滑圆孤轨道,下端B恰与小车右墙平滑对接.小车的质量m=3kg、长度L=2.16m,其上表面距地面的髙度h=0.2m.现有质量m=1kg的小滑块,由轨道顶端如图甲所示,两平行金厲板A,B的板长L=0.2m,板间距d=0.2m.两金属板间加如图乙所示的交变电压,并在两板间形成交变的匀强电场,忽略其边缘效应.在金属板上侧有方向垂直于纸重为50N的物体放在水平面上,物体与水平面的动摩擦因数为0.2,现用方向相反的水平力F1和F2拉物体,其中F1=15N,如图所示.要使物体做匀加速运动,则F2的大小可能为()A.4NB.1如图(a)所示,光滑水平面上停放着一辆上表面粗糙的平板车,质量为M,车的上表面距地面的高度与车上表面长度相同.一质量为m的铁块以水平初速度v0滑到小车上,它们的速度随时间如图所示,竖直平面内有一半径R=0.9m、圆心角为60°的光滑圆弧轨道PM,圆弧轨道最底端M处平滑连接一长s=3m的粗糙平台MN,质量分别为mA=4kg,mB=2kg的物块A,B静置于M点,它们一物体放置在倾角为θ的斜面上,斜面固定于加速上升的电梯中,加速度为a,如图所示.在物体始终相对于斜面静止的条件下()A.当θ一定时,a越大,斜面对物体的正压力越小B.当θ一定有一个固定竖直放置的圆形轨道,半径为R,由左右两部分组成.如图所示,右半部分AEB是光滑的,左半部分BFA是粗糙的.现在最低点A给一质量为M的小球一个水平向右的初速度,使小如图甲所示,物体沿斜面由静止开始下滑,在水平面上滑行一段距离后停止,物体与斜面和水平面间的动摩擦因数相同,斜面与水平面平滑连接,图乙中v、a、F、s、t、Ek分别表示物如图1所示,在2010上海世博会上,拉脱维亚馆的风洞飞行表演,令参观者大开眼界,最吸引眼球的就是正中心那个高为H=10m,直径D=4m的透明“垂直风洞”.风洞是人工产生和控制的气如图所示为某工厂的货物传送装置,水平运输带与一斜面MP连接,运输带运行的速度为v0=5m/s.在运输带上的N点将一小物体轻轻的放在上面,N点距运输带的右端x=1.5m.小物体的质量如图所示,在平面直角坐标系xOy中的第一象限内存在磁感应强度大小为B、方向垂直于坐标平面向内的有界圆形匀强磁场区域(图中未画出);在第二象限内存在沿x轴负方向的匀强电场如图所示,光滑的14圆弧AB,半径R=0.8m,固定在竖直平面内.一辆质量为M=2kg的小车处在水平光滑平面上,小车的表面CD与圆弧在B点的切线重合,初始时B与C紧挨着,小车长L=1m,(学有余力同学做,不计入总分)如图所示,设AB段是距水平传送带装置高为H=1.25m的光滑斜面,水平段BC使用水平传送带装置,BC长L=5m,与货物包的摩擦系数为μ=0.4,顺时针转动如图所示,一工件置于水平地面上,其AB段为一半径R=1.0m的光滑圆弧轨道,BC段为一长度L=0.5m的粗糙水平轨道,二者相切于B点,整个轨道位于同一竖直平面内,P点为圆弧轨道上放在光滑水平面上的物块1、2用轻质弹簧秤相连,如图所示,现对物块1、2分别施加方向相反的水平力F1、F2,且F1>F2,则()A.弹簧秤的示数一定等于F1-F2B.弹簧秤的示数一定大于F如图所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L的平行金属极板MN和PQ,两极板中心各有一小孔S1、S2,两极板间电压的如图所示,坐标平面第Ⅰ象限内存在大小为E=4×105N/C方向水平向左的匀强电场,在第Ⅱ象限内存在方向垂直纸面向里的匀强磁场.质荷比为mq=4×10-10N/C的带正电粒子从x轴上的A点以初在水平冰面上,一辆质量为1×103kg的电动雪橇做匀速直线运动,关闭发动机后,雪橇滑行一段距离后停下来,其运动的v-t图象如图所示,那么关于雪橇运动情况以下判断正确的是()A如图是蹦床运动员落在弹簧床面的示意图,在弹簧弹力的作用下,运动员有一段竖直向下做减速运动的缓冲过程,忽略空气阻力,在此过程中()A.运动员处于失重状态B.运动员所受合外如图是利用传送带装运煤块的示意图,传送带足够长,煤块与传送带间的动摩擦因数μ=0.4,传送带与运煤车的车厢底板间的竖直高度H=1.8m,与车厢底板中心的水平距离x=1.2m,从如图所示,足够长的光滑导轨ab、cd固定在竖直平面内,导轨间距为l,b、c两点间接一阻值为R的电阻.ef是一水平放置的导体杆,其质量为m、电阻值为2R,杆与ab、cd保持良好接触.如图所示,位于光滑水平桌面上的物块P用跨过定滑轮的轻绳与小托盘相连,托盘内有砝码.托盘与法码的总质量为m,P的质量为2m,重力加速度为g.释放后,P从静止开始沿桌面运动的如图所示,AB为水平轨道,A、B间距离s=1.25m,BCD是半径为R=0.40m的竖直半圆形轨道,B为两轨道的连接点,D为轨道的最高点.有一小物块质量为m=1.0kg,小物块在F=10N的水平如图所示,一粗糙斜面AB与圆心角为37°的光滑圆弧BC相切,经过C点的切线方向水平.已知圆弧的半径为R=1.25m,斜面AB的长度为L=1m.质量为m=1kg的小物块(可视为质点)在水平外力如图所示,在直角坐标系xoy的第一象限内存在沿y轴负方向、场强为E的匀强电场,在第四象限内存在垂直纸面向外、磁感应强度为B的匀强磁场,在磁场与电场分界线的x轴上有一无限如图所示,在光滑的水平长直轨道上,有一质量为M=3kg、长度为L=2m的平板车以速度v0=4m/s匀速运动.某时刻将质量为m=1kg的小滑块轻放在平板车的中点,小滑块与车面间的动摩擦因一块质量为m=1Kg,、长为L的木板,静止在光滑的水平面上,一个质量也为m、带正电,且电荷量为q=0.2c的小金属块以水平速度v0=5m/s从木板的左端开始在木板上滑动,此时木板的如图所示:小车沿倾角为θ的光滑斜面滑下,在小车的水平台面上有一质量为M的木块和小车保持相对静止,则()A.小车下滑时木块所受的摩擦力为MgsinθcosθB.小车下滑时木块所受的支如图所示,一个物体放在粗糙的水平地面上.在t=0时刻,物体在水平力F作用下由静止开始做直线运动.在0到t0时间内物体的加速度a随时间t的变化规律如图2所示.已知物体与地面间的若战机从航母上起飞滑行的距离相同,牵引力相同,则()A.携带弹药越多,加速度越大B.加速度相同,与携带弹药的多少无关C.携带燃油越多,获得的起飞速度越大D.携带弹药越多,滑如图所示,滑块以初速度v0滑上表面粗糙的固定斜面,到达最高点后又返回到出发点.则能大致反映滑块整个运动过程中速度v、加速度a、动能Ek、重力对滑块所做的功w与时间t或位移如图所示,工厂利用皮带传输机把货物从地面运送到高出水平地面的C平台上,C平台离地面的高度一定.运输机的皮带以一定的速度v顺时针转动且不打滑.将货物轻轻地放在A处,货物随如图所示,物体甲、乙质量均为m,弹簧和悬线的质量可忽略.当悬线被烧断的瞬间,甲、乙的加速度分别为()A.a甲=g,方向向上,a乙=g,方向向下B.a甲=g,方向向上,a乙=g,方向向质量为5.0×103kg的汽车,额定功率为1.5×104W,设汽车行驶时阻力恒定.当汽车在平直的水平公路上以10m/s的最大速度匀速行驶时,(1)汽车受到的阻力多大?(2)若此时关闭油门,经如图所示,AB段为一半径R=0.2m的光滑14圆弧轨道,EF为一倾角是30°的足够长的光滑固定斜面,斜而上有一质量为0.1kg的薄木板CD,开始时薄木板被锁定.一质量也为0.1kg的物块如图是空中轨道列车(简称空轨)悬挂式单轨交通系统,无人驾驶空轨行程由计算机自动控制.在某次研究制动效果的试验中,计算机观测到制动力逐渐增大,下列各图中能反映其速度v随质量为2㎏的物块放在粗糙水平面上,在水平拉力的作用下由静止开始运动,物块动能EK与其发生位移x之间的关系如图所示.已知物块与水平面间的动摩擦因数μ=0.2,重力加速度g取10在水平桌面上,用6N水平拉力拉质量为2kg的物体,不计桌面的阻力,则物体的加速度大小为______m/s2.如图所示为水平传送带装置,绷紧的皮带AB始终保持以v=1m/s的速度运动.一质量m=0.5kg的小物体,从离皮带很近的地方落在A处,若物体与皮带间的动摩擦因数μ=0.1,AB间距离L=2一个质量m=0.1kg可视为质点的小木块,放在绕竖直轴转动的水平圆盘上,与圆盘一起以角速度ω=5rad/s匀速转动,木块与转动轴的距离r=0.2m(如图所示).(1)在图上画出小木块m的受物体质量为m,放在倾角为30°的粗糙斜面上,放手后,物体下滑的加速度大小为a.若用平行于斜面向上的力F作用在物体上,使它沿斜面向上做加速度大小为a的匀加速运动,则力F的大如图所示,光滑斜面倾角为θ,c为斜面上的固定挡板.物块a和b通过轻质弹簧连接,a,b处于静止状态,弹簧压缩量为x.现对a施加沿斜面向下的外力使弹簧再压缩3x,之后突然撤去外力如图所示是乒乓球发射器示意图,发射口距桌面高度为0.45m,假定乒乓球水平射出,落在桌面上与发射口水平距离为2.4m的P点,飞行过程中未触网,不计空气阻力,取g=10m/s2,则直角坐标系xoy界线OM两侧区域分别有如图所示电、磁场(第三象限除外),匀强磁场磁感应强度为B、方向垂直纸面向外,匀强电场场强E=vB、方向沿x轴负方向.一不计重力的带正电的粒如图所示,一半径R=1m的圆盘水平放置,在其边缘E点固定一小桶(可视为质点).在圆盘直径DE的正上方平行放置一水平滑道BC,滑道右端C点与圆盘圆心O在同一竖直线上,且竖直高度h一质量为m=2.0kg的小物块随足够长的水平传送带一起运动,被一水平向左飞来的子弹击中并从物块中穿过,如图1所示.固定在传送带右端的位移传感器纪录了小物块被击中后的位移随电动机通过一质量不计的绳子从静止开始吊起质量为8kg的物体,在前2s内绳的拉力恒定,此后电动机一直以最大的输出功率工作,物体被提升到90m高度时恰开始以15m/s的速度匀速上如图,一物体在粗糙斜面上受到沿斜面向上的力作用,处于静止状态.下列判断正确的是()A.物体一定受到四个力的作用B.摩擦力方向一定沿斜面向下C.摩擦力的大小可能等于零D.若F增如图所示,平面直角坐标系xoy中,在第二象限内有竖直放置的两平行金属板,其中右板开有小孔;在第一象限内存在内、外半径分别为33R、R的半圆形区域,其圆心与小孔的连线与x轴如图所示,物体在一个沿斜面的拉力F的作用下,以一定的初速度沿倾角为30°的斜面向上做匀减速运动,加速度的大小为a=3m/s2,物体在沿斜面向上的运动过程中,以下法正确的有()如图所示,半径为R的环形塑料管竖直放置,AB为该环的水平直径,且管的内径远小于环的半径,环的A、B及其以下部分处于水平向左的匀强电场中,管的内壁光滑.现将一质量为m,带水平地面上放一个质量为5kg的铁块放在水平地面上,与之相连的轻质弹簧的原长为x0=12cm,铁块与地面间的最大静摩擦力大小等于滑动摩擦力,铁块与地面间动摩擦因数为0.3,一个2012年我们中国有了自己的航空母舰“辽宁号”,航空母舰上舰载机的起飞问题一直备受关注.某学习小组的同学对舰载机的起飞进行了模拟设计.如图,舰载机总质量为m,发动机额定功在xoy平面内,直线OP与y轴的夹角α=45°.第一、第二象限内存在大小相等,方向分别为竖直向下和水平向右的匀强电场,电场强度E=1.0×105N/C;在x轴下方有垂直于纸面向外的匀强磁某平面上有一半径为R的圆形区域,区域内、外均有垂直于该平面的匀强磁场,圆外磁场范围足够大,已知两部分磁场方向相反,方向如图所示,磁感应强度都为B,现在圆形区域的边界某杂技运动员静止在竖直杆的上端,此时杆下端的压力传感器显示杆对地面的压力大小为F1;当杂技运动员沿杆匀加速下滑时,压力传感器的示数为F2(F2<F1).已知杆的高度为h,且运在水平地面上放一长为40cm的竖直轻弹簧,将质量为0.50kg的木块A轻轻放在竖直弹簧上,将弹簧压缩了5.0cm后,处于静止状态,如图所示.由此可知,弹簧的劲度系数为______.如果如图所示,一轻弹簧竖直固定在水平地面上,弹簧正上方有一个小球自由下落.从小球接触弹簧上端O点到将弹簧压缩到最短的过程中,小球的加速度a随时间t或者随距O点的距离X变化的如图所示,半径为及、圆心角为600的光滑圆弧槽,固定在高为h的平台上,小物块从圆弧槽的最高点A静止开始滑下,滑出槽口B时速度水平向左,小物块落在地面上C点,B、C两点在以如图,一重力不计的带电粒子以一定的速率从a点对准圆心射人一圆形匀强磁场,恰好从b点射出.增大粒子射入磁场的速率,下列判断正确的是()A.该粒子带正电B.从bc间射出C.从ab间一滑雪运动员以滑雪板和滑雪杖为工具在平直雪道上进行滑雪训练.某次训练中,他站在雪道上第一次利用滑雪杖对雪面的作用获得水平推力F=60N而向前滑行,其作用时间为t1=1s,撤如图所示,一束电子从y轴上的M点以平行于x轴的方向射入第一象限区域,射入的速度大小为v0,电子的质量为m,电荷量为e.为使电子束通过x轴上N点,可在第一象限的某区域加一个沿如图,一匀强磁场磁感应强度为B,方向垂直纸面向里,其边界是半径为R的圆.MN为圆的一直径.在M点有一粒子源可以在圆平面内向不同方向发射质量m、电量-q速度为v的粒子,粒子重如图甲所示,一物块在t=0时刻,以初速度v0=4m/s从足够长的粗糙斜面底端向上滑行,物块速度随时间变化的图象如图乙所示,t=0.5s时刻物块到达最高点,t=1.5s时刻物块又返回底如图(甲)所示,一个小球放在光滑水平面上,在竖直界线MN的左方始终受到水平恒力F1作用,在MN的右方除受F1外还受到与F1在同一条直线上的水平恒力F2的作用.小球从A点由静止开始如图所示的装置叫做阿特伍德机,是阿特伍德(G.Atwood1746-1807)创制的一种著名力学实验装置,用来研究匀变速直线运动的规律.绳子两端的物体下落(上升)的加速度总是小于自由落如图所示,水平轨道AB与位于竖直面内半径为R的半圆形光滑轨道BCD相连,半圆形轨道的直径BD与AB垂直,水平轨道上有一质量m=1.0kg可看作质点的小滑块,滑块与水平轨道间的动摩如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向.在x轴上方空间的第一、第二象限内,既无电场也无磁场,第三象限,存在沿y轴正方向的匀强电场和垂直xy平面(纸面)向里的匀强如图所示,一固定光滑杆与水平方向夹角为θ,将一质量为m1的小环套在杆上,通过轻绳悬挂一个质量为m2的小球,静止释放后,小环与小球保持相对静止以相同的加速度a一起下滑,此如图,在平面直角坐标系xOy内,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限以ON为直径的半圆形区域内,存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量如图,一束带正电粒子(不计重力)自下而上进入一匀强磁场区域,发现该粒子发生如图的偏转.下列说法正确的是()A.磁场方向垂直纸面向里B.进入磁场后粒子的动能变大C.增大磁场的物体在外力作用下做变速直线运动时,()A.当合外力增大时,加速度增大B.当合外力减小时,物体的速度也减小C.当合外力减小时,物体的速度方向与外力方向相反D.当合外力不变时,传送带在工农业生产中有着广泛的应用.如图所示,平台上的人欲通过一根平行于传送带的轻绳将物品拉上平台,已知物品质量m=50kg,可看成质点,用F=500N的恒力从静止开始往上拉带负电的小物体A放在倾角为θ(sinθ=0.6,cosθ=0.8)的绝缘斜面上.整个斜面处于范围足够大、方向水平向右的匀强电场中,如图所示,物体A的质量为m,电量为-q,与斜面问的动摩物块A、B的质量分别为m和2m,用轻弹簧连接后放在光滑的水平面上,对B施加向右的水平拉力F,稳定后A、B相对静止在水平面上运动,此时弹簧长度为l1;若撤去拉力F,换成大小仍为如图所示是采用动力学方法测量空间站质量的原理图,已知飞船质量为3.0×103kg.在飞船与空间站对接后,推进器对它们的平均推力大小为900N,推进器工作了5s,测出飞船和空间站如图甲所示,有一足够长的粗糙斜面,倾角θ=37°,一滑块以初速度v0=16m/s从底端A点滑上斜面,滑至B点后又返回到A点.滑块运动的图象如图乙所示,求:(已知:sin37°=0.6,cos37°如图为一滑梯的示意图,滑梯的长度AB为L=5.0m,倾角θ=37°,BC段为与滑梯平滑连接的水平地面.一个小孩从滑梯顶端由静止开始滑下.小孩与滑梯间的动摩擦因数为μ=0.3,与水平地如图所示,一带电微粒质量为m=2.0×10-11kg、电荷量为q=+1.0×10-5C,从静止开始经电压为U1=100V的电场加速后,水平进入两平行金属板间的偏转电场中,偏转电压为U2=100V,接如图所示,有一固定的且内壁光滑的半球面,球心为O,最低点为C,在其内壁上有两个质量相同的小球(可视为质点)A和B,在两个高度不同的水平面内做匀速圆周运动,A球的轨迹平面质量m=10kg的物体放在水平地板上,在沿水平方向拉力F1=20N的作用下,物体恰好做匀速直线运动.若用F2=30N的水平拉力作用于物体上,从静止开始作用5.0s撤去拉力F2.求:(1)撤去2003年10月15日,我国成功地发射了“神州”五号载人宇宙飞船.发射飞船的火箭全长58.3m,起飞时总质量M0=479.8t(吨).发射的初始阶段,火箭竖直升空,航天员杨利伟有较强超重感滑雪者及滑雪板总质量m=75kg,以v0=2.0m/s的初速度沿山坡匀加速滑下,山坡的倾角θ=30°,在t=5.0s的时间内滑下的距离s=60m.设阻力的大小不变,重力加速度g取10m/s2,求:(1)为满足列车提速的要求,下列做法正确的是()A.减小铁路弯道处的半径B.增大列车发动机的功率C.增大铁路弯道处内外轨的间距D.加大铁路弯道处内外轨的高度差如图所示,木板B静止在光滑水平面上,某时刻大小可忽略的物体A以v0=4m/s的初速度滑上木板B的上表面.已知A的质量m1=1kg,B的质量为m2=0.5kg,A与B之间的动摩擦因数µ=0.2.g取如图所示,m1=m2=1kg,斜面倾角为θ=37°,斜面固定在地面上,m1与斜面的摩擦因数为0.25,m2悬空离地面高度h=0.8m,系统由静止开始运动.求当m2落地后m1还能向上滑行多远?(斜如图甲所示,物体原来静止在水平面上,用一水平力F拉物体,在F从0开始逐渐增大的过程中,物体先静止后又做变加速运动,其加速度a随外力F变化的图象如图乙所示.根据图乙中所标如图所示,有一个很长的斜面放在粗糙的水平面上,在斜面上有一长板正好沿斜面匀速下滑.若将一橡皮泥块放在长木板上后,则它们一起在下滑的过程中()A.长木板所受的合外力不为质量为1kg的物体A和3kg的物体B,它们分别在F1和F2的作用下,产生相同的加速度.则()A.F2=F1B.F2=3F1C.F2=F13D.F2=3F12如图所示,在两个水平平行金属极板间存在着向下的匀强电场和垂直于纸面向里的匀强磁场,电场强度和磁感应强度的大小分别为E=2×106N/C和B1=0.1T,极板的长度l=33m,间距足够如图所示,光滑水平地面上的小车质量为M,站在小车水平底板上的人质量为m.人用一根跨过定滑轮的绳子拉小车,定滑轮上下两侧的绳子都保持水平,不计绳与滑轮之间的摩擦.在人和从牛顿运动定律可知,无论怎样小的力都可以使物体产生加速度,可是当我们用一个很小的力去推放置在水平地面上的桌子时,却推不动它,这是因为()A.牛顿运动定律对静止的物体不如图所示为某粮仓中由两台皮带传送机组成的传输装置示意图.设备调试时,将倾斜传送机的传送带与水平地面间调成倾角θ=37°,使水平传送机的转动轮边缘以5m/s的线速度沿顺时针方以力F拉一物体,使其以加速度a在水平面上做匀加速直线运动,力F的水平分量为F1,如图所示,若以和F1大小、方向都相同的力F′代替F拉物体,使物体产生加速度a′,那么()A.当水平如图所示,电动传送带以恒定速度v0=1.2m/s运行,传送带与水平面的夹角α=37°,现将质量m=20kg的物品箱轻放到传送带底端,经过一段时间后,物品箱被送到h=1.8m的平台上,已知