牛顿第二定律的试题列表
牛顿第二定律的试题100
质量m=1kg的物体在光滑水平面上运动,初始时速度大小为2m/s,在物体运动的直线上施以一水平恒力,经过t=1s,速度大小变为4m/s,则这个力的大小可能是()A.1NB.3NC.6ND.9N用同种材料制成倾角30°的斜面和长水平面,斜面长2.4m且固定,一小物块从斜面顶端以沿斜面向下的初速度v0开始自由下滑,当v0=2m/s时,经过0.8s后小物块停在斜面上.多次改变如图所示,将一质量为m=0.1kg的小球自水平平台右端O点以初速度v0水平抛出,小球飞离平台后由A点沿切线落入竖直光滑圆轨道ABC,并沿轨道恰好通过最高点C,圆轨道ABC的形状为如图所示,质量M=1kg的木板静止在粗糙的水平地面上,木板与地面间的动摩擦因数μ1=0.1,在木板的左端放置一个质量m=1kg、大小可以忽略的铁块,铁块与木板间的动摩擦因数μ2=0如图甲所示,物体原来静止在水平面上,用一水平力F拉物体,在F从0开始逐渐增大的过程中,物体先静止后又做变加速运动,其加速度a随外力F变化的图象如图乙所示.根据图乙中所标如图所示,物体A通过定滑轮与动滑轮相连,物体B和物体C挂在动滑轮上,使系统保持静止状态,现在同时释放三个物体,发现物体A保持静止不动.已知物体A的质量mA=6kg,物体B的质在海滨游乐场有一种滑沙的娱乐活动.如图所示,人坐在滑板上从斜坡的高处A点由静止开始下滑,滑到斜坡底部B点后沿水平滑道再滑行一段距离到C点停下来,斜坡滑道与水平滑道间是杂技中的“顶竿”由两个演员共同表演,站在地面上的演员肩部顶住一根长竹竿,另一演员爬至竹竿顶端完成各种动作后下滑.若竿上演员自竿顶由静止开始下滑,滑到竿底时速度正好为如图所示,一根轻弹簧竖直立在水平面上,下端固定.在弹簧正上方有一个物块从高处自由下落到弹簧上端,将弹簧压缩.当弹簧被压缩了x0时,物块的速度减小到零.从物块和弹簧接触(1)如图1,固定于竖直面内的粗糙斜杆,在水平方向夹角为30°,质量为m的小球套在杆上,在大小不变的拉力作用下,小球沿杆由底端匀速运动到顶端,为使拉力做功最小,拉力F与杆用同种材料制成倾角为α=37°的斜面和长水平面,斜面长2.5m且固定,斜面与水平面之间有一段很小的弧形连接.一小物块从斜面顶端以初速度v0沿斜面向下滑动,若初始速度v0=2.0m如图所示,真空有一个半径r=0.5m的圆形磁场,与坐标原点相切,磁场的磁感应强度大小B=2×10-3T,方向垂直于纸面向里,在x=r处的虚线右侧有一个方向竖直向上的宽度为L1=0.5m如图所示一根劲度系数k=200N/m的轻质弹簧拉着质量为m=0.2kg的物体从静止开始沿倾角为θ=37°的斜面匀加速上升,此时弹簧伸长量x=0.9cm,在t=1.0s内物体前进了s=0.5m.求:(1如图所示,一种β射线管由平行金属板A、B和平行于金属板的细管C组成,放射源S在A极板左端,可以向各个方向发射不同速度的β粒子.若金属板长为L,金属板间距为12L,细管C与两金用水平力拉动物体在水平面上做加速直线运动.当改变拉力的大小时,物体运动的加速度也随之变化,a和F的关系如图所示.g取10m/s2.(1)根据图线所给的信息,求物体的质量及物体与如图所示,AB为半径R=0.8m的1/4光滑圆弧轨道,下端B恰与小车右端平滑对接.小车质量M=3kg,车长L=2.06m,车上表面距地面的高度h=0.2m.现有一质量m=1kg的滑块,由轨道顶端无如图所示.在光滑水平面上有物体A、B,质量分别为m1、m2.在拉力F作用下,A和B以加速度a做匀加速直线运动.某时刻突然撤去拉力F,此瞬时A和B的加速度为a1、a2.则()A.a1=a2=0B.a神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系麦哲伦云时,发现了LMCX-3双星系统,它由可见星A和不可见一个物体在水平地面上由静止开始在水平力F的作用下前进了距离s,然后撤去F,物体又前进了距离2s停下来,那么,物体在运动中受到的摩擦力的大小为()A.F2B.F3C.2F3D.F4从同一地点同时开始沿同一直线运动的两个物体Ⅰ、Ⅱ的速度图象如图所示.在0-t时间内,下列说法中正确的是()A.Ⅰ、Ⅱ两个物体所受的合外力都在不断减小B.Ⅰ物体所受的合外力不断增物体在水平地面上受水平力F的作用,在6s内速度v-t图线与F做功的功率P-t图线分别如图甲、乙所示.求物体与地面间的动摩擦因数为多少?如图所示,ab是水平的光滑轨道,bc是与ab相切的位于竖直平面内、半径R=0.4m的半圆形光滑轨道.现在A、B两个小物体之间夹一个被压缩的弹簧(弹簧未与A、B挂接)后用细线拴住,使质量为m的一物体放在升降机的水平地板上,当升降机以13g的加速度加速下降时,物体对升降机的水平地板的压力大小为()A.43mgB.mgC.23mgD.13mg如图一所示,质量分别为m1=1kg和m2=2kg的A、B两物块并排放在光滑水平面上,若对A、B分别施加大小随时间变化的水平外力F1和F2,其中F1=(9-2t)N,F2=(3+2t)N,请回答下列问题:如图所示,固定在水平面上的斜面倾角为θ,长方体木块A质量为M,其PQ面上钉着一枚小钉子,质量为m的小球B通过一细线与小钉子相连接,小球B与PQ面接触,且细线与PQ面平行,木块一艘帆船在湖面上顺风行驶,在风力的推动下做速度为v=4m/s的匀速直线运动,已知该帆船在运动状态下突然失去风的动力作用,帆船在湖面上做匀减速直线运动,经过t=8s才可静止;如图所示,足够长的斜面倾角θ=370,一物体以v0=12m/s的初速度从斜面上A点处沿斜面向上运动;加速度大小为a=8m/s2,g取10m/s2.求:(1)物体沿斜面上滑的最大距离x;(2)物体与斜如图,一个质量为m的小球(可视为质点)以某一初速度从A点水平抛出,恰好从圆管BCD的B点沿切线方向进入圆弧,经BCD从圆管的最高点D射出,恰好又落到B点.已知圆弧的半径为R且A与长为L的细绳,一端系一质量为m的小球,另一端固定于某点,原来小球静止于竖直面内,现给小球一个水平初速度V,使小球在竖直平面内做圆周运动,并且刚好能够通过最高点,则下如图所示,在正交坐标系Oxyz的空间中,同时存在匀强电场和匀强磁场(x轴正方向水平向右,y轴正方向竖直向上).匀强磁场的方向与Oxy平面平行,且与x轴的夹角为60°.一质量为m、电在竖直平面内建立一平面直角坐标系xoy,x轴沿水平方向,如图甲所示.第二象限内有一水平向右的匀强电场,场强为E1.坐标系的第一、四象限内有一正交的匀强电场和匀强交变磁场,如图(a)所示,在以O为圆心,内外半径分别为R1和R2的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U为常量,R1=R0,R2=3R0,一电荷量为+q,质量为m的粒质量为m的汽车,启动后沿平直路面行驶,如果发动机的功率恒为P,汽车行驶过程中受到的摩擦阻力大小一定,汽车速度能够达到的最大值为v,那么当汽车的车速为v4时,汽车的瞬时如图所示,电梯内的底部固定一斜面,斜面上放一物体.当电梯以加速度a向上做匀加速运动时,物体相对斜面无滑动,则物体对斜面的摩擦力f大小______,方向______.学校的物理课外活动小组欲测滑块在斜面上下滑的加速度以及滑块与木板间的动摩擦因数,一位同学想出了一个巧妙的方案.如图所示,将一小钢球和滑块用细线连接,跨在木板上端的在2008年北京奥运会上,我国运动员包揽了蹦床项目的两枚金牌.蹦床运动中运动员在一张绷紧的弹性网上蹦起、腾空并做空中动作,图中记录的是一运动员从空中落下与蹦床接触又被如图所示,AB为水平轨道,A、B间距离s=2.25m,BCD是半径为R=0.40m的竖直半圆形轨道,B为两轨道的连接点,D为轨道的最高点.一小物块质量为m=1.2kg,它与水平轨道和半圆形轨如图所示,A是质量mA=0.98kg的物块(可视为质点),B和C是完全相同的木板,长l=2.7m,质量m=1.0kg.已知木板与地面间的动摩擦因数μ=0.2,物块A与木板之间的动摩擦因数为μ1,一质量为M、倾角为θ的斜面体在水平地面上,质量为m的小木块(可视为质点)放在斜面上,现用一平行于斜面的、大小恒定的拉力F作用于小木块,拉力在斜面所在的平面内绕小木块旋转如图所示,质量为M的物体在粗糙斜面上以加速度a1匀加速下滑(斜面固定);当把物体的质量增加m时,加速度为a2;当有一竖直向下且过重心的恒力F作用在物体上时,加速度变为a3,“快乐向前冲”节目中有这样一种项目,选手需要借助悬挂在高处的绳飞跃到鸿沟对面的平台上,如果已知选手的质量为m,选手抓住绳由静止开始摆动,此时绳与竖直方向夹角为α,绳的将一个物体以某一速度从地面竖直向上抛出,设物体在运动过程中所受空气阻力大小不变,则物体()A.刚抛出时的速度最大B.在最高点的加速度为零C.上升时间大于下落时间D.上升时的质量为M的拖拉机拉着耙来耙地,由静止开始做匀加速直线运动,在时间t内前进的距离为s.耙地时,拖拉机受到的牵引力恒为F,受到地面的阻力为自重的k倍,耙所受阻力恒定,连接杆如图所示,两质量相等的物块A、B通过一轻质弹簧连接,B足够长、放置在水平面上,所有接触面均光滑.弹簧开始时处于原长,运动过程中始终处在弹性限度内.在物块A上施加一个水平如图所示,甲、乙两物体分别固定在一根弹簧的两端,并放在光滑水平的桌面上,两物体的质量分别为m1和m2,弹簧的质量不能忽略.甲受到方向水平向左的拉力Fl作用,乙受到水平向如图所示,光滑水平地面上停着一辆平板车,其质量为2m,长为L,车右端(A点)有一块静止的质量为m的小金属块.金属块与车间有摩擦,以中点C为界,AC段与CB段摩擦因数不同.现给车如图(a)所示,用一水平外力F拉着一个静止在倾角为θ的光滑斜面上的物体,逐渐增大F,物体做变加速运动,其加速度a随外力F变化的图象如图(b)所示,若重力加速度g取10m/s2.根据如图,动物园的水平地面上放着一只质量为M的笼子,笼内有一只质量为m的猴子,当猴以某一加速度沿竖直柱子加速向上爬时,笼子对地面的压力为F1;当猴以同样大小的加速度沿竖直如图所示为粮袋的传送装置,已知AB间长度为L,传送带与水平方向的夹角为θ,工作时运行速度为v,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A点将粮袋放到运行中的传送如图所示,质量m=0.015kg的木块Q放在水平桌面上的A点.A的左边光滑,右边粗糙,与木块间的动摩擦因数μ=0.08.在如图的两条虚线之间存在竖直向上的匀强电场和水平向里的匀强磁如图,在倾角为θ的光滑斜面上,有两个用轻质弹簧相连接的物体A、B.它们的质量分别是mA和mB,弹簧的劲度系数k,C为一固定挡板.系统处于静止状态.现开始用一恒力F沿斜面方向拉一根劲度系数为k、质量不计的轻弹簧上端固定,下端系一质量为m的物体,有一水平板将物体托住,并使弹簧处于自然长度,如图所示,现让木板由静止开始以加速度a(a<g)匀加速向下客机一般都配有紧急出口,发生意外情况时,客机着陆后打开紧急出口的舱门,会自动生成一个气囊(由斜面部分AC和水平部分CD构成),乘客可沿该气囊滑行到地面.如图所示,某客机如图所示,半径R=0.80m的14光滑圆弧轨道固定在光滑水平面上,轨道上方A点有一质为m=1.0kg的小物块.小物块由静止开始下落后打在圆轨道上B点但未反弹,在瞬间碰撞过程中,小如图所示,有一足够长斜面,倾角α=37°,一小物块质量为m,从斜面顶端A处由静止下滑,到B处后,受一与物体重力大小相等的水平向右恒力作用,开始减速,到C点减速到0(C点未画出如图所示.一质量为m的物体以某一初速度冲上倾角30°的斜面.其运动的加速度为34g,物体在斜面上上升的最大高度为h.则在这过程中()A.重力势能增加了mghB.重力势能增加了3mgh4C.如图所示,在平面直角坐标系XOY内,第I象限存在沿Y轴正方向的匀强电场,第IV象限内存在垂直于坐标平面向里的匀强磁场,磁感应强度大小设为B1(未知),第III象限内也存在垂直于如图所示,质量为M的小车放在光滑的水平面上.小车上用细线悬吊一质量为m的小球,M>m.现用一力F水平向右拉小球,使小球和车一起以加速度a向右运动时,细线与竖直方向成α角,细如图所示,竖直放置在水平面上的轻质弹簧上放着质量为1kg的物体A,处于静止状态,若将一个质量为2kg的物体B竖直向下轻放在A上的一瞬间,则B对A的压力大小为(取g=10m/s2)()A.如图所示的水平传送带静止时,一个小物块A以某一水平初速度从传送带左端冲上传送带,然后从传送带右端以一个较小的速度v滑出传送带;若传送带在皮带轮带动下运动时,A物块仍水平地面上的物体受水平力F的作用,如图所示,现将作用力F保持大小不变,沿逆时针方向缓缓转过180°,在转动过程中,物体一直在向右运动.则在此过程中,物体对地面的正压FN和如图甲所示,足够长的固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,沿杆方向给环施加一个拉力F,使环由静止开始运动,已知拉力F及小环速度v随时间t变化的规律如图在某空间存在着水平向右的匀强电场和垂直于纸面向里的匀强磁场,如图所示,一段光滑且绝缘的圆弧轨道AC固定在纸面内,其圆心为O点,半径R=1.8m,OA连线在竖直方向上,AC弧对如图所示,在空间存在着水平向右、场强为E的匀强电场,同时存在着竖直向上、磁感应强度为B的匀强磁场.在这个电、磁场共存的区域内有一足够长的绝缘杆沿水平方向放置,杆上套如图所示,斜面体M放在粗糙的水平面上,小物块m沿斜面体的粗糙斜面加速下滑,此时,地面对斜面体M的静摩擦力大小为f1.若用一平行于斜面向下的力推小物块,使小物块下滑的加速如图所示,传送带与水平地面的倾角θ为37°,AB长16m,传送带以10m/s的速率逆时针转动,在传送带上A端无初速放一质量为0.5kg的物块,它与传送带间的动摩擦因数μ为0.5.求物块如图所示,质量均为1kg的两个物体A、B放在水平地面上相距7m,它们与水平地面的动摩擦因数均为μ=0.2.现使它们分别以初速度vA=6m/s和vB=2m/s同时相向运动,不计物体的大小,g质量M=3kg的长木板放在光滑的水平面上,在水平恒力F=11N作用下由静止开始向右运动,如图所示,当速度达到lm/s时,将质量m=4kg的物块轻轻放到木板的右端,已知物块与木板间动如图为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B=2.0×10-3T,在x轴上距坐标原点L=22m的P处为离子的入射口,在y轴上上如图所示,下面部分是由电动势为E内阻不计的电源,定值电阻R0和可变电阻R组成的一个闭合电路.上面部分是真空中固定于A点的电量为Q(Q>0)点电荷,另有一电子枪.求:(1)若电源的为了测量两个质量不等沙袋的质量,由于没有可直接测量的工具(如天平、弹簧秤等),某实验小组应用下列器材测量:轻质定滑轮(质量和摩擦可忽略)、一套总质量为m=0.5kg砝码,细在一粗糙的斜面上放置一正方形的箱子,其内部刚好放入一质量一定的金属球,如图所示,现在从斜面顶部释放箱子,在其加速下滑过程中,下列关于球对箱子的作用力,说法正确的是负重奔跑是体能训练的常用方式之一,如图所示的装置是运动员负重奔跑的跑步机.已知运动员质量为m1,绳拴在腰间沿水平方向跨过定滑轮(不计滑轮摩擦、质量)悬挂质量为m2的重物如图所示,一个长L1=0.9m、宽L2=0.6m的光滑斜面体,其倾角θ=30°.有一长度L=0.4m的轻质绳一端固定在距斜面顶点A为L=0.4m斜面边缘的O点上,另一端系一质量m=1kg的小球.现把如图所示,为供儿童娱乐的滑梯的示意图,其中AB为斜面滑槽,与水平方向的夹角为θ=37°;长L的BC水平滑槽,与半径R=0.2m的14圆弧CD相切;ED为地面.已知儿童在滑槽上滑动时的动如图所示,质量为lkg的薄木板静止在光滑水平桌面上,薄木板上有一质量为0.5kg的小铁块,它离木板的左端距离为0.5m,铁块与木板间动摩擦因数为0.1.现用水平拉力向右以2m/s如图甲所示,水平天花板下悬挂一光滑的轻质的定滑轮,跨过定滑轮的质量不计的绳(绳承受拉力足够大)两端分别连接物块A和B,A的质量为m0,B的质量m是可以变化的,当B的质量改变如图,滑雪运动员由静止开始经过一段1/4圆弧形滑道滑行后,从弧形滑道的最低点O点水平飞出,经过3s时间落到斜坡上的A点.已知O点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动如图是某游乐场的一种过山车的简化图,过山车由倾角为θ的斜面和半径为R的光滑圆环组成0.假设小球从A处由静止释放,沿着动摩擦因数为μ的斜面运动到B点(B为斜面与圆环的切点),如图所示,固定在竖直面内的光滑圆环半径为R,圆环上套有质量分别为m和2m的小球A、B(均可看作质点),且小球A、B用一长为2R的轻质细杆相连,在小球B从最高点由静止开始沿圆环质量为m的汽车,发动机的额定功率为P,若汽车在平直公路上行驶时所受阻力的大小恒为f,试求:(1)汽车在平直公路上行驶的最大速度vm为多少?(2)如果汽车以额定功率在平直公路上2011年初,我国南方多次遭受严重的冰灾,给交通运输带来巨大的影响.已知汽车橡胶轮胎与普通路面的动摩擦因数为0.7,与冰面的动摩擦因数为0.1.当汽车以某一速度沿水平普通路某游乐场过山车模型简化为如图所示,光滑的过山车轨道位于竖直平面内,该轨道由一段斜轨道和与之相切的圆形轨道连接而成,圆形轨道的半径为R,可视为质点的过山车从斜轨道上如图所示,边长为a的正三角形ABC将平面分为两个区域,在三角形内区域存在垂直于纸面的匀强磁场,在三角形外区域存在三个宽度都为a、场强大小都为E、方向分别垂直于边AB、BC和一个物体在光滑水平面上做匀速直线运动.t=0时,开始对物体施加一外力F,力F的方向与速度方向相同,大小随时间变化的关系如图所示,则物体在0~t0时间内()A.物体的加速度a逐渐建筑工地常用吊车通过钢索将建筑材料从地面吊到高处(如图1).图2为建筑材料被吊车竖直向上提升过程的简化运动图象,下列判断正确的是()A.前5s的平均速度是0.5m/sB.整个过程上如图所示,一质量m=10kg的木箱放在水平地面上,在F=80N的水平拉力作用下由静止开始运动,同时木箱还受到地面对它f=40N的滑动摩擦力的作用.试求:(1)木箱运动时的加速度a的大小如图所示装置由加速电场、偏转电场和偏转磁场组成.偏转电场处在加有电压的相距为d的两块水平平行放置的导体板之间,匀强磁场水平宽度为l,竖直宽度足够大,处在偏转电场的右质量为1kg的小球在半径为40cm的竖直平面内的圆形轨道的内侧运动.(g=10m/s)(1)求小球经过最高点而不脱离轨道的最小速度.(2)当小球以4m/s的速度经过最高点时,求小球对轨道的压某物体置于光滑水平面上,在水平方向的两个平衡力作用下处于静止状态.若使其中一个力的大小按如图所示的规律变化,则在0-t0时间内,该物体运动的()A.速度先增大后减小B.速度升降机地板上放一台秤,台秤的盘中放一质量为m的物体.某时刻,台秤的读数为0.8mg,则此时物体处于______(填“超重”或“失重”)状态,其加速度的大小为______.如图所示,汽车通过拱形桥时的运动可看做圆周运动.质量为m的汽车以速率v通过拱形桥最高点时,若桥面的圆弧半径为R,则此时汽车对桥面的压力大小为()A.mgB.2mgC.mg-mv2RD.mg+一个物体从长度是L、高度是h的光滑斜面顶端A由静止开始下滑,如图,物体滑到斜面下端B时的速度大小为()A.ghB.2ghC.gLD.2gL用如图1所示的实验装置验证牛顿第二定律.①完成平衡摩擦力的相关内容:(i)取下砂桶,把木板不带滑轮的一端垫高,接通打点计时器电源,______(选填“静止释放”或“轻轻推动”)小车如图所示,质量为m=2.0kg的木块静止在高为h=1.8m的水平台面上,木块距平台右边缘的距离为s=7.75m.用水平力F=20N拉动木块,木块从A点向右运动了4.0m时撤去力F,此后木块继一个平板小车置于光滑水平面上,其右端恰好和一个14光滑圆弧固定轨道AB的底端等高对接,如图所示.已知小车质量M=3.0kg,长L=2.06m,圆弧轨道半径R=0.8m.现将一质量m=1.0如图所示是南方卫视体育频道娱乐节目中的一项趣味运动,参与者唐旺(可视为质点)质量m=60kg,他无初速度的站上匀速运动的水平传送带上,经一段时间相对传送带静止,之后被平抛光滑水平面上放着质量mA=1kg的物块A与质量mB=2kg的物块B,A与B均可视为质点,A靠在竖直墙壁上,A、B间夹一个被压缩的轻弹簧(弹簧与A、B均不拴接),用手挡住B不动,此时弹簧弹如图1所示,“”型木块放在光滑水平地面上,木块的水平表面AB粗糙,与水平面夹角θ=37°的表面BC光滑.木块右侧与竖直墙壁之间连接着一个力传感器,当力传感器受压时,其示数为正消防员进行滑杆下楼训练,一质量为60kg的消防员从脚离地20m的杆上由静止开始下滑,为确保安全,中间过程的最大速度不得超过15m/s,着地时的速度不得超过4m/s,消防员和杆间能
牛顿第二定律的试题200
如图所示为北京奥运会修建的从东直门到首都机场T3航站楼的轨道交通线的一部分.已知交通线全长为27.3km,设计运行时间为16min.在设计这条轨道交通线的过程中,科技人员进行了如图所示,长为L的不可伸长的绳子一端固定在O点,另一端系质量为m的小球,小球静止在光滑水平面上.现用大小为F水平恒力作用在另一质量为2m的物块上,使其从静止开始向右运动如图所示,在一次消防演习中,消防员练习使用挂钩从高空沿滑杆由静止滑下,滑杆由AO、OB两段直杆通过光滑转轴连接地O处,可将消防员和挂钩均理想化为质点,且通过O点的瞬间没先后用相同材料制成的橡皮条彼此平行地沿水平方向拉同一质量为m的物块,且每次使橡皮条的伸长量均相同,物块m在橡皮条的拉力作用下所产生的加速度a与所拉橡皮条的数目n的关系如图所示,光滑的绝缘平台水平固定,在平台右下方有相互平行的两条边界MN与PQ,其竖直距离为h=1.7m,两边界间存在匀强电场和磁感应强度为B=0.9T且方向垂直纸面向外的匀强磁质量为m=1.0kg的小滑块(可视为质点)放在质量为M=3.0kg的长木板的右端,木板上表面光滑,木板与地面之间的动摩擦因数为μ=0.2,木板长L=1.0m.开始时两者都处于静止状态,现火车转弯可以看成匀速圆周运动,而从2007年4月18日起,全国铁路正式实施第六次大面积提速,时速将达到200km以上,由于火车速度提高会使外轨受损.为解决这一难题,以下措旗可汽车在水平路面上从静止开始做匀加速直线运动,t1末关闭发动机,做匀减速直线运动,t2末静止,其v-t图象如图所示,图中α<β,若汽车牵引力做功为W,平均功率为P;汽车加速和减如图所示,长L=1.3m,质量M=5.0kg的平板小车A静止在光滑的水平面上,小车左端放有质量m=1.0kg的木块B(可以看作质点),木块B与小车A之间的动摩擦因数μ=0.20,现用水平恒力如图所示,在平面坐标系xOy内,同种带正电离子,质量m=1.0×10-20kg、带电量q=1.0×10-10C,以相同速度不断从C点垂直射入匀强电场,偏转后通过极板MN上的小孔O离开电场时的速如图所示,质量为m的小球位于距水平地面高度H处的P点,在水平地面的上方存在一定厚度的“作用力区域”,如图中的虚线部分.当小球进入“作用力区域”后将受到竖直向上的恒定作用力一质量为m的物体沿x轴正方向运动,加速度a随位移x的变化关系如图所示,图象关于原点O对称,则物体()A.在O点的速度最小B.在x2点的速度最大C.在-x1和x1两点的速度相等D.在x1和如图所示,皮带的速度是3m/s,两轴心距离s=4.5m,现将m=1kg的小物体轻放在左轮正上方的皮带上,物体与皮带间的动摩擦因数为μ=0.15.电动机带动皮带将物体从左轮运送到右轮正如图所示,在坐标系xOy内有一半径为a的圆形区域,圆心坐标为O1(a,0),圆内分布有垂直纸面向里的匀强磁场.在直线y=a的上方和直线x=2a的左侧区域内,有一沿y轴负方向的匀强电如图所示,杂技演员从地面上的A点开始骑摩托车沿竖直圆形轨道做特技表演.已知人与车的总质量不变,车的速率恒定,若选定地面为零势能参考平面,则摩托车通过C点时()A.机械能在某一旅游景区内建有一山坡滑草运动项目.该山坡可看成倾角θ=30°的斜面,一名游客连同滑草装置总质量m=80kg,他从静止开始匀加速下滑,在时间t=5.0s内沿斜面下滑的位移x=25如图所示,长为R=0.6m的不可伸长的细绳一端固定在O点,另一端系着质量为m2=0.1kg的小球B,小球B刚好与水平面相接触.现使质量为m1=0.3kg物块A以v0=5m/s的初速度向B运动,A汽车从静止开始沿平直轨道做匀加速运动,所受阻力始终不变,在此过程中,下列说法正确的是()A.汽车牵引力保持不变B.汽车牵引力逐渐增大C.发动机输出功率不变D.发动机输出功率如图所示,长为L的细绳,一端系有一质量为m的小球,另一端固定在O点.细绳能够承受的最大拉力为7mg.现将小球拉至细绳呈水平位置,然后由静止释放,小球将在竖直平面内摆动.如如图所示,固定斜面的倾角为θ=37°,物体与斜面间的动摩擦因数为μ=0.25,物体受到平行于斜面的力F作用静止开始运动,力F随时间t变化规律如图(以平行于斜面向上为正方向),前如图,长为L的轻绳一端系于固定点O,另一端系质量为m的小球.将小球从O点以一定初速水平向右抛出,经一定时间绳被拉直,以后小球将以O为支点在竖直平面内摆动.已知绳刚被拉直2009年是中华人民共和国成立60周年,南莫中学物理兴趣小组用空心透明塑料管制作了如图所示的竖直“60”造型.两个“0”字型的半径均为R.让一质量为m、直径略小于管径的光滑小球从一电子在磁感强度为B的匀强磁场中,以一固定的正电荷为圆心在同一轨道上运动,磁场方向垂直于运动平面,电场力恰好是磁场作用在电子上洛伦兹力的3倍,电子电量为e,质量为m,带电粒子以速度y沿CB方向射入一横截面为正方形的区域.BC均为该正方形两边的中点,如图所示,不计粒子的重力.当区域内有竖直方向的匀强电场F时,粒子从A点飞出,所用时间为t1如图甲所示,在两平行金属板的中线OO′某处放置一个粒子源,粒子沿OO1方向连续不断地放出速度v0=1.0×105m/s的带正电的粒子.已知带电粒子的比荷qm=1.0×108C/kg,粒子的重力和如图所示,与纸面垂直的竖直面MN的左侧空间中存在竖直向上场强大小为E的匀强电场(上、下及左侧无界).一个质量为m、电量为q=mg/E的可视为质点的带正电小球,在t=0时刻以大小为如图甲所示,真空中两水平放置的平行金属板C、D,上面分别开有两对正对的小孔O1、O2和O3、O4,O2与O3之间的距离d=20cm.金属板C、D接在正弦交流电源上,C、D两板间的电压UCD随一物体悬于弹簧秤下,弹簧秤悬挂于电梯内的天花板上,下列各种情况中,弹簧秤的示数最大的是()A.电梯匀减速上升,加速度大小为g/3B.电梯匀加速上升,加速度大小为g/3C.电梯匀如图所示,质量为m的小球用长为L的悬线固定于O点,在O点正下方O′处钉一个钉子,把悬线拉直与竖直方向成一定角度,由静止释放小球,当悬线碰到钉子时,则()A.小球的线速度v突如图所示是一种磁动力电梯的模拟机,即在竖直平面内有两根很长的平行竖直轨道,轨道间有垂直轨道平面的匀强磁场B1和B2,且B1和B2的方向相反,B1=B2=1T,电梯桥厢固定在如图所如图所示,ABCD是一个T型支架,AC与BD垂直,且AB=BC.已知整个支架的质量为M=9kg,重心在BD上离D点为l=0.4m的O点处,BD长为d=0.6m,支架可绕位于水平地面上且过D点的水平轴如图a、b所示,是一辆质量为6×103kg的公共汽车在t=0和t=4s末两个时刻的两张照片.当t=0时,汽车刚启动(汽车的运动可看成匀加速直线运动).图c是车内横杆上悬挂的拉手环经放大后如图所示,一个人用一根长1m,只能承受46N拉力的绳子,拴着一个质量为1㎏的小球,在竖直平面内作圆周运动,已知圆心O离地面h=6m.转动中小球在最底点时绳子断了,(g=10m/s2)求如图所示,一质量为M=5.0kg的平板车静止在光滑水平地面上,平板车的上表面距离地面高为h,其右侧足够远处有一障碍物A,另一质量为m=2.0kg可视为质点的滑块,以v0=8m/s的初如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg,木板的质量M=4kg,长L=2.5m,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现水平面上有一质量为M=51kg的小车,其上有一定滑轮通过绳在滑轮两侧分别连有质量为m1=5kg和m2=4kg的物体A与B.其中物体A在小车水平台面上,物体B悬挂着,如图所示.整个系统开始继1999年11月20日我国“神州一号”无人驾驶载人飞船的成功发射和回收后,我国又已经成功发送了“神州二号”、“神州三号”、“神州四号”无人宇宙飞船.所了解,我国将要按计划发送首如图所示,在X轴上方有水平向左的匀强电场E1,在X轴下方有竖直向上的匀强电场E2,且E1=E2=mgq,在X轴下方的虚线(虚线与Y轴成45°)右侧有垂直纸面向外的匀强磁场,磁感应强度为一个质量为m的木块沿光滑曲轨道1位置由静止释放,经过时间t后,沿轨道运行了d的路程到达了2位置,如图所示,竖直方向距离为h,v与a为木块到达了2位置时的瞬时速度和瞬时加速如图所示,两块竖直放置的平行金属板相距d=1.2m,接电压U=2400V的直流电源,一条长l=50cm的绝缘细线的一端系住一个质量m=50g的带电小球,另一端固定在O点,小球在竖直平面内如图(甲)所示,水平面上A、B两点相距6.25m,一个质量为4.0kg的小滑块在水平推力的作用下沿水平面自左向右滑动,先后经过A、B两点.在滑块到达A点之前,滑块沿水平面做匀速运若带正电荷的小球只受到电场力的作用,它在任意一时间内()A.一定沿电场线运动B.一定不沿电场线运动C.不一定沿电场线运动D.以上说都不正确某塑料球成型机工作时,可以喷出速度v0=10m/s的塑料小球,已知喷出小球的质量m=1.0×10-4kg,并且在喷出时已带了q=1.0×10-4C的负电荷,如图所示,小球从喷口飞出后,先滑过如图示,A、B两物体叠放在一起,用手托住,让它们静止靠在墙边,然后释放,它们同时沿竖直墙面下滑,已知mA>mB,则物体B()A.只受一个重力B.受到重力、摩擦力各一个C.受到重力如图所示,飞行员的质量为m,重力加速度为g,他驾驶飞机在竖直平面内做翻筋斗的圆周运动,当飞机飞到最高点时速度为v1,飞行员对机座的压力恰好为零,则轨道半径R=______.若有一辆质量为800kg的小汽车驶上圆弧半径为50m的拱桥.(g=10N/kg)问:(1)汽车到达桥顶时速度为5m/s,汽车对桥的压力是多大?(2)汽车以多大速度经过桥顶时便恰好对桥没有压力而腾如图所示,有一根长2L的轻质细线,它的两端固定在一根长为L的竖直转轴AB上,线上套一个可以自由移动的质量为m的小环.当转轴转动时小环正好以B为圆心,在水平面内作匀速圆周运如图所示,水平面绝缘且光滑,弹簧左端固定,右端连一轻质绝缘挡板,空间存在着水平方向的匀强电场,一带电小球在电场力和挡板压力作用下静止.若突然将电场反向,则小球加速我国未来将建立月球基地,并在绕月轨道上建造空间站.如图所示,关闭动力的航天飞船在月球引力作用下向月球靠近,并将沿椭圆轨道与空间站在B处对接,已知空间站绕月轨道半径为如图甲、乙所示,是一辆质量为6×103kg的公共汽车在t=0和t=3s末两个时刻的两张照片.当t=0时,汽车刚启动,在这段时间内汽车的运动可看成匀加速直线运动.图丙是车内拉手环所处在粗糙的水平面上,物体在水平推力作用下由静止开始作匀加速直线运动,作用一段时间后,将水平推力逐渐减小到零,则在水平推力逐渐减小到零的过程中()A.物体速度逐渐减小,加如图所示,(a)图表示光滑平台上,物体A以初速度v0滑到上表面粗糙的水平小车上,车与水平面间的动摩擦因数不计,(b)图为物体A与小车的v-t图象,由此可知()A.小车上表面至少的2008年8月9日,中国选手陈燮霞以抓举95公斤、挺举117公斤、总成绩212公斤夺得举重48公斤金牌.这也是中国代表团在第29届北京奥运会上获得的首枚金牌.举重运动是力量与技巧充分如下图所示,真空室内存在宽度为s=8cm的匀强磁场区域,磁感应强度B=0.332T,磁场方向垂直纸面向里.紧挨边界ab的中央有一点状α粒子放射源S,可沿纸面向各个方向放射速率相同法国人劳伦斯•菲舍尔在澳大利亚伯斯冒险世界进行了超高空特技跳水表演,他从30m高的塔上跳下,准确地落入了水池中.若空气对他的阻力是他重力的0.2倍,g=lOm/s2,则他在空中(A)我国于2005年10月12日上午9时整发射“神舟六号”宇宙飞船,发射后,经583s,船箭分离,飞船入轨.为了使飞船顺利升空,飞船需要有一个加速过程,在加速过程中,宇航员处于超由静止开始竖直向上运动的电梯里,某同学把测量加速度的传感器固定在手提包上,手提包与传感器总质量为1kg,到达某一楼层停止,采集数据并分析处理后列在下表中:运动过程匀加如图所示,在一直立的光滑管内放置一轻质弹簧,上端O点与管口A的距离为2X0,一质量为m的小球从管口由静止下落,将弹簧压缩至最低点B,压缩量为x0,不计空气阻力,则()A.小球如图所示,质量M=2kg足够长的木板静止在水平地面上,与地面的动摩擦因数μ1=0.1,另一个质量m=1kg的小滑块,以6m/s的初速度滑上木板,滑块与木板之间的动摩擦因数μ2=0.5,g如图所示,MN、PQ是平行金属板,板长为L两板间距离为d,在PQ板的上方有垂直纸面向里足够大的匀强磁场.一个电荷量为q,质量为m的带负电粒子以速度V0从MN板边缘且紧贴M点,沿平在一段半径为R的圆孤形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的μ倍,则汽车拐弯时的安全速度是______.在光滑的圆锥形漏斗的内壁,有两个质量相等的小球A、B,它们分别紧贴漏斗,在不同水平面上做匀速圆周运动,如图所示,则下列说法正确的是()A.小球A的速率大于小球B的速率B.小如图所示,小车上有固定支架,支架上用细线拴一个小球,线长为L(小球可看作质点),小车与小球一起以速度v0沿水平方向向左匀速运动.当小车突然碰到矮墙后车立即停止运动,此后如图所示,在海滨游乐场里有一种滑沙游戏,人坐在滑板上从倾角θ=37°的斜坡上由静止开始下滑,经过斜坡底端沿水平滑道再滑行一段距离停下.已知滑板与斜面和水平滑道间的动摩擦一个航天飞行器甲在高空绕地球做匀速圆周运动,若它沿与运动方向相反的方向发射一枚火箭乙,则()A.甲和乙都可能在原高度绕地球做匀速圆周运动B.甲可能在原高度绕地球做匀速圆如图甲所示,空间存在竖直向上的磁感应强度为B的匀强磁场,ab、cd是相互平行的间距为l的长直导轨,它们处于同一水平面内,左端由金属丝bc相连,MN是跨接在导轨上质量为m的导如图所示,A、B两物体通过轻细绳跨过定滑轮相连接,已知物体A的质量大于物体B的质量,开始它们处于静止状态.在水平拉力F的作用下,物体A向右做变速运动,同时物体B匀速上升.如图所示,三角体由两种材料拼接而成,BC界面平行底面DE,两侧面与水平面夹角分别为30°和60°.已知物块从A静止下滑,加速至B匀速至D;若该物块静止从A沿另一侧面下滑,则有()如图所示,L1和L2为平行的虚线,L1上方和L2下方都是垂直纸面向里的磁感应强度相同的匀强磁场,AB两点都在L2上.带电粒子从A点以初速v与L2成30°斜向上射出,经过偏转后正好过B如图所示,光滑水平面上的O处有一质量为m=2kg物体.物体受到两个水平力的作用,F1=4N,F2=(2+2x)N,x为物体相对O的位移.物体从静止开始运动,问:(1)当位移为x=0.5m时物体的加如图所示,足够长的矩形区域abcd内充满磁感应强度为B、方向垂直纸面向里的匀强磁场,现从ad边的中心O点处,垂直磁场方向射入一速度为v0的带正电粒子,v0与ad边的夹角为30°.已质量为m的小球由长为L的细线系住,细线的另一端固定在A点,AB是过A的竖直线,且AB=L,E为AB的中点,过E作水平线EF,在EF上某一位置钉一小钉D,如图所示.现将小球悬线拉至水平如图所示,质量相同的两个带电粒子M、N,以相同的速度沿垂直于电场方向同时射入两平行板间的匀强电场中,M从两板正中央射入,N从下极板边缘处射入,它们最后打在上极板的同一如图所示,质量不同的两个物体A和B,用跨过定滑轮的细绳相连.开始时B放在水平桌面上,A离地面有一定的高度,从静止开始释放让它们运动,在运动过程中B始终碰不到滑轮,A着地如图所示,固定在水平面上的斜面倾角θ=37°,长方体木块A的MN面上钉着一颗小钉子,质量m=1.5kg的小球B通过一细线与小钉子相连接,细线与斜面垂直,木块与斜面间的动摩擦因数在一水平面上静止放着一长L=10cm、质量M=50g的金属板,在板上有一质量为m=50g的小铝块,铝块与板间的动摩擦因数μ1=0.03,金属板与水平面间的动摩擦因数μ2=0.01.现让铝块在如图所示的直角坐标系中,在直线X=-2L0到y轴区域内存在着两个大小相等、方向相反的有界匀强电场,其中x轴上方的电场方向沿y轴负方向,x轴下方的电场方向沿y轴正方向,在电场质量M=10kg的B板上表面上方,存在一定厚度的相互作用区域,如图中划虚线的部分,当质量m=1kg的物块P进入相互作用区时,B便有竖直向上的恒力f作用于P,f=kmg,k=51,f对P的作水平地面上有一轻质弹簧,下端固定上端与物体A相连接,整个系统处于平衡状态.现用一竖直向下的力压物体A,使A竖直向下做匀加速直线运动一段距离,整个过程中弹簧一直处在弹性如图所示,水平面B点以左是光滑的,B点以右是粗糙的,质量为m1和m2的两个小物块,在B点以左的光滑水平面上相距L,以相同的速度向右运动.它们先后进入表面粗糙的水平面后,最2003年10月16日我国成功地发射了载人宇宙飞船,标志着我国的运载火箭技术已跨入世界先进行列,成为第三个实现“飞天”梦想的国家.在某一次火箭发射实验中,若该火箭(连同装载物A、B两物体叠放在光滑水平面上,对A物体施加一水平变力F,F-t关系图象如图所示.两物体由静止开始运动,且始终相对静止.则()A.t0时刻,两物体间的摩擦力为零B.t0时刻,两物体斜面上的物体受到平行于斜面向下的力F作用,力F随时间变化的图象及物体运动的v-t图象,如图所示.由图象中的信息能够求出的量或可以确定的关系是()A.物体的质量mB.斜面的倾角如图所示,用倾角为30°的光滑木板AB托住质量为m的小球,小球用轻弹簧系住,当小球处于静止状态时,弹簧恰好水平.则当木板AB突然向下撤离的瞬间()A.小球将开始做自由落体运动如图所示,MN是匀强磁场的左边界(右边范围很大),磁场方向垂直纸面向里,在磁场中有一粒子源P,它可以不断地沿垂直于磁场方向发射出速度为v、电荷为+q、质量为m的粒子(不计粒如图所示为阿特武德机一不可伸长的轻绳跨过轻质定滑轮,两端分别连接质量为M=0.6kg和m=0.6kg的重锤.已知M自A点由静止开始运动,经1.0s运动到B点.求:(1)M下落的加速度(2)当如图所示,AB为水平轨道,A、B间距离s=2.25m,BCD是半径为R=0.40m的竖直半圆形轨道,B为两轨道的连接点,D为轨道的最高点.一小物块质量为m=1.2kg,它与水平轨道和半圆形轨建筑工地上的塔吊起吊重物时,在某段时间内运动轨迹如图所示,开始时重物以速度v0沿水平方向x轴运动,钢丝绳的方向始终沿竖直方向y轴.重物质量为m,若在图示的时间段内重物的一根不计质量的细线最多能吊着质量为1千克的物体以大小为a的加速度匀加速上升,或者最多能吊着质量为3千克的物体以大小为a的加速度匀减速上升,那么可知a为______米/秒2,这一光滑圆环固定在竖直平面内,环上套着两个小球A和B(中央有孔),A、B间由细绳连接着,它们处于如图中所示位置时恰好都能保持静止状态.此情况下,B球与环中心O处于同一水平面如图所示,在动摩擦因素μ=0.2的水平面AB上,水平恒力F推动质量为m=1kg的物体从A点由静止开始作匀加速直线运动,物体到达B点时撤去F,接着又冲上光滑斜面(设经过B点前后速度如图所示,在直角坐标系的第Ⅰ象限0≤x≤4区域内,分布着强场E=28×106N/C的匀强电场,方向竖直向上;第Ⅱ象限中的两个直角三角形区域内,分布着磁感受应强度均为B=5.0×10-2T的匀一固定斜面长5m、高3m,底端有一质量为5kg的物体A,它和斜面间的动摩擦因数为0.3.用水平力F=100N推物体A,使A物体由静止沿斜面上升,在A沿斜面上升2m时撤去力F.问撤去力F时如图所示,水平传送带AB长L=8.3m,质量M=1Kg的木块随传送带一起以Vl=2m/s的速度向左匀速运动(传送带的传送速度恒定),木块与传送带的动摩擦因数u=0.5,当木块运动到最左端有一轻弹簧,原长L0=0.50m,劲度系数k=100N/m,上端固定.在其下端挂一质量m=1.0kg的铁块后,再将铁块竖直向下拉,使弹簧长度变为L1=0.90m.然后由静止释放铁块,则铁块在竖如图所示,在x>0的空间中,存在沿x轴方向的匀强电场,电场强度正E=10N/C;在x<O的空间中,存在垂直xoy平面方向的匀强磁场,磁感应强度B=0.5T.一带负电的粒子(比荷q/m=160C/在2004年雅典奥运会上,我国运动员黄珊汕第一次参加蹦床项目的比赛即取得了第三名的优异成绩.假设表演时运动员仅在竖直方向运动,通过传感器将弹簧床面与运动员间的弹力随时一质量为m的滑块以初速度v0自固定于地面的斜面底端A开始滑上斜面,到达某一高度后返回,滑块与斜面之间有摩擦,则表示滑块在斜面上运动的速度v、动能Ek、势能Ep和动量p随时间如图所示,在水平转台的光滑水平横杆上穿有两个质量分别为2m和m的小球A和B,A、B间用劲度系数为k的轻质弹簧连接,弹簧的自然长度为L,当转台以角速度ω绕坚直轴匀速转动时,如如图所示,一个足够长的“U”形金属导轨NMPQ固定在水平面内,MN、PQ两导轨间的宽为L=0.50m.一根质量为m=0.50kg的均匀金属导体棒ab静止在导轨上且接触良好,abMP恰好围成一个
牛顿第二定律的试题300
如图所示,在y=0和y=2m之间有沿着x轴方向的匀强电场,MN为电场区域的上边界,在x轴方向范围足够大.电场强度的变化如图所示,取x轴正方向为电场正方向.现有一个带负电的粒子,一圆环A套在一均匀圆木棒B上,A的高度相对B的长度来说可以忽略不计.A和B的质量都等于m,A和B之间的滑动摩擦力为f(f<mg).开始时B竖直放置,下端离地面高度为h,A在B的顶端,如如图所示,在X轴的上方(y≥0)存在着垂直于纸面向外的匀强磁场,磁感强度为B,在原点O有一个离子源向X轴上方的各个方向发射出质量为m,电量为q的正离子,速率都是V,对那些在x在某一真空空间内建立xoy坐标系,从原点O处向第Ⅰ象限发射一比荷qm=1×104c/kg的带正电的粒子(重力不计),速度大小v0=103m/s、方向与x轴正方向成30°角.(1)若在坐标系y轴右侧加一个劲度系数为K=800N/m的轻弹簧,两端分别连接着质量均为m=12kg物体A和B,将它们竖直静止地放在水平地面上,如图所示.施加一竖直向上的变力F在物体A上,使物体A从静止开始向如图所示,质量m=100g的小物块,从距地面h=2.0m处的斜轨道上由静止开始下滑,与斜轨道相连的是半径r=0.4m的圆轨道.若物体运动到圆轨道的最高点A时,物块对轨道的压力恰好等如图所示,一根电阻为R=12Ω的电阻丝做成一个半径为r=1m的圆形导线框,竖直放置在水平匀强磁场中,线框平面与磁场方向垂直,磁感强度为B=0.2T,现有一根质量为m=0.1kg、电阻如图所示,放置在水平地面上的支架质量为M,支架顶端用细线拴着的摆球质量为m,现将摆球拉至水平位置,而后释放,摆球运动过程中,支架始终不动,以下说法正确的是()A.刚释放如图所示,匀强电场的电场强度大小为E、方向竖直向下;匀强磁场的磁感应强度为B、方向水平,垂直纸面向里,电、磁场的范围足够大.(1)若质量为m的带电油滴在垂直于B的平面内以质量为m的带电小球,从固定在地面上的半径为R的光滑半圆轨道顶处由静止开始沿逆时针方向滑下.(1)若整个装置处于磁感强度为B、方向垂直轨道平面向里的匀强磁场中,如图所示,如图,在竖直平面内x轴下方有磁感强度为B,方向垂直纸面向里的匀强磁场和竖直向下的匀强电场,电场强度为E,一个带电小球从y轴上P(o.h)点以初速V0竖直向下抛出,小球穿过x轴我国的汽车工业正在飞速发展,一辆轿车从动力到通讯天线都与物理学息息相关.某国产新型轿车,以36km/h的速度在平直公路上行驶,制动后的滑行距离为10.0m,则轿车所受的制动(1)如图1所示,A、B是两块完全相同的长木板,长度均为L,质量均为m.两板间动摩擦因数为μ,将两者边缘对齐叠放在光滑水平面上,并共同以某一水平速度v0向前运动.某时刻下面木本题中A.B分别为一期教材、二期新教材分叉题,考生选择只能选A组的全部或B组的全部完成(A题)如图所示,ABC和AD是两个高度相等的光滑斜面,ABC由倾角不同的两部分组成,且AB+如图所示,有一倾角为30°的光滑斜面,斜面长l为10m,一小球从斜面顶端以10m/s的速度沿水平方向抛出,求:(1)小球沿斜面滑到底端的时间t和水平位移S;(2)小球到达斜面底端时的质量为m的物体A放在倾角为θ=37°的斜面上时,恰好能匀速下滑.现用细线系住物体A,并平行于斜面向上绕过光滑的定滑轮,另一端系住物体B,物体A恰好能沿斜面匀速上滑.求物休B的如图所示,两物体A、B之间用轻质弹簧相连接,放在光滑的水平面上,物体A紧靠竖直墙壁,现向左推物体B使弹簧压缩,然后由静止释放,则()A.弹簧第一次恢复原长后,物体A开始加如图所示,a为带正电的小物块,b是一不带电的绝缘物块(设a、b间无电荷转移),a、b叠放于粗糙的水平地面上,地面上方有垂直纸面向里的匀强磁场,现用水平恒力F拉b物块,使a、如图所示,水平放置的平行板电容器,原来两板不带电,上极板接地,它的极板长L=0.1m,两板间距离d=0.4cm,有一束相同的带电微粒以相同的初速度先后从两板中央平行极板射入一个实心圆柱导体和一个中空圆柱形导体共轴放置,其间为真空.实心柱体半径为a,中空柱体内半径为b,如图所示,其间有磁感应强度为B的匀强磁场,一个电子以径向速度从内柱体表有一行星探测器,质量为1800kg.现将探测器从某一行星的表面竖直升空,探测器的发动机推力恒定.发射升空后9s末,发动机因发生故障突然灭火.如图是从探测器发射到落回地面全过如图所示,在xoy平面内,第I象限中有匀强电场,场强大小为E,方向沿y轴正方向,在x轴的下方有匀强磁场,磁感强度大小为B,方向垂直于纸面向里,今有一个质量为m,电荷量为e的如图所示,在地面附近,坐标系Oxy在竖直平面内,空间有沿水平方向垂直于纸面向里的匀强磁场,磁感应强度大小为B,在x<0的空间内还有沿x轴负方向的匀强电场,一个质量为m的带质量为m的物体放在水平面上,在沿水平方向大小为F的拉力(F<mg)作用下做匀速运动,如图所示.试求:(1)物体与水平面间的动摩擦因数(2)在物体上再施加另一个大小为F的力,①若要使利用如图所示的方法测定细线的抗拉强度.在长为L的细线下端悬挂一只质量不计的小盒,小盒的左侧开一孔,一个金属小球从斜轨道上释放后,水平进入小盒内,与小盒一起向右摆动.两个质量不计的弹簧将一金属块支在箱子的上顶板与下底板之间,箱只能沿竖直方向运动,如图所示.两弹簧原长均为0.80m,劲度系数均为60N/m.当箱以a=2.0m/s2的加速度匀减速上“和平号”空间站已于今年3月23日成功地坠落在太平洋海域,坠落过程可简化为从一个近圆轨道(可近似看作圆轨道)开始,经过与大气摩擦,空间站的绝大部分经过升温、熔化,最后汽如图1所示.一对平行光滑轨道放置在水平面上,两轨道间距l=0.20m,电阻R=1.0Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感如图(a)所示,A、B为水平放置的平行金属板,板间距离为d(d远小于板的长和宽).在两板之间有一带负电的质点P.已知若在A、B间加电压Uo,则质点P可以静止平衡.现在A、B间加上如图如图所示,甲是一个带电量为-q的小物块,其质量为m1.乙是一个不带电的长方体绝缘物块,其质量为m2.甲、乙叠放在一起置于光滑的水平地板上.甲、乙之间的动摩擦因数为μ,假设它一个质量为m、带+q电量的小球,用长L的绝缘细线悬吊在竖直向下的场强为E的匀强电场中.如果将细线拉至与竖直方向成θ角,然后将小球无初速释放,如图所示.求小球运动到最低点时如图所示为某钢铁厂的钢轨传送装置,斜坡长为L=20m,高为h=2m,斜坡上紧排着一排滚筒.长为l=8m、质量为m=1×103kg的钢轨ab放在滚筒上,钢轨与滚筒间的动摩擦因数为μ=0.3,工半径为R的绝缘光滑圆环固定在竖直平面内,环上套有一个带正的小珠子,该装置所在空间存在着水平向右的匀强电场,如图,已知珠子所受电场力是重力的3/4倍,将珠子从最低点由静质量为1kg的物体在水平面上以10m/s的速度向右运动时,给它加一水平向左的推力3N,物体与水平面的动摩擦因数为0.2.在4s的时间内,求:(1)物体向右运动的最远距离.(2)物体运动一物体放置在倾角为θ的斜面上,斜面固定于加速上升的电梯中,加速度为a,如图所示.在物体始终相对于斜面静止的条件下,下列说法中正确的是()A.当θ一定时,a越大,斜面对物体民用航空客机的机舱,除了有正常的舱门和舷梯连接,供旅客上下飞机外,一般还设有紧急出口.发生以外情况的飞机在着陆后,打开紧急出口的舱门,会自动生成一个由气囊构成的斜如图,圆环质量为M,经过环心的竖直钢丝AB上套有一质量为m的球,今将小球沿钢丝AB以初速v0竖直向上抛出.致使大圆环对地无作用力,则小球上升的加速度为______.小球能上升的最如图所示,水平虚线L1、L2间的高度差h=5cm,L1的上方和L2的下方都存在垂直纸面向里的匀强磁场和竖直向上的匀强电场,下方磁场的磁感应强度是上方的2倍,一带电微粒正好能在竖如图所示,质量为M=0.7kg的靶盒位于光滑水平导轨上.在O点时,恰能静止,每当它离开O点时便受到一个指向O点的大小恒为F=50N的力.P处有一固定的发射器,它可根据需要瞄准靶盒如图甲所示,一初速度为零的带电粒子在A、B板间被电场加速后,从小孔射入长方形区域abcd,当粒子到达P点时,该区域内即出现一个始终垂直纸面而方向交替变化的匀强磁场,其变如图所示,P为一倾角α=37°的斜面.物体A质量为M,置于斜面上时其上表面水平,与斜面间动摩擦因数μ=0.25.物体B质量为m,当置于A上时与A间的摩擦力足够大.(取sin37°=0.6,cos海豚靠尾部来推动下部的水,能够从水中高高跃起,被誉为“会飞的鱼”.一身长l=1.8m,质量m=65kg的海豚,跃起后从h1=1.0m的高度处自由下落,尾部接触水面后经过时间t=0.25s身跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,如图所示.已知人的质量为70kg,吊板的质量为10kg,绳及定滑轮的质量、滑轮的摩擦均可不计.取重力加速度g=10m/s2.当如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路如图所示,一质量为m的滑块以初速度v0自固定斜面底端A开始冲上斜面,到达某一高度后返回A,斜面与滑块之间有摩擦.下图分别表示滑块在斜面上运动的整个过程中速度v、加速度a、如图,长为L的轻杆一端固定一质量为m的小球,另一端有固定轴O,杆可在竖直平面内绕轴O无摩擦转动.已知小球通过最低点Q时,速度的大小为v=5gl,则小球运动情况为()A.小球能达如图所示,光滑水平面上A、B两物块质量相等并用无弹性轻绳连接,轻质弹簧两端分别与墙壁和物块A相连,F-L图象表示此弹簧的弹力大小与长度关系.当弹簧为原长时物块A在P位置,如图所示,质量m=2kg的物体原静止在水平地面上,物体与地面间的动摩擦因数μ=0.75,一个与水平方向成37°角斜向上、大小F=20N的力拉物体,使物体匀加速运动,2s后撤去拉力.求如图所示,质量为m的三角形木楔A置于倾角为θ的固定斜面上,它与斜面间的动摩擦因数为μ,一水平力F作用在木楔A的竖直平面上.在力F的推动下,木楔A沿斜面以恒定的加速度a向上滑如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直导轨所在的平面,磁感应强度为B,导轨间距离为L,质量为m的金属棒ab可沿导轨自由滑动,导轨的一端跨接一个电阻R,金质量为M的平板长为L=0.88m,在光滑的水平面上以速度υ0向右匀速运动,在平板上方存在厚度d=2cm的“相互作用区域”(如图中虚线部分所示),“相互作用区域”上方高h=20cm处有一质量将一个动力传感器连接到计算机上,我们就可以测量快速变化的力.某一小球用一条不可伸长的轻绳连接,绳的另一端固定在悬点上.当小球在竖直面内来回摆动时,用动力传感器测得绳一质量为m的物体在水平恒力F的作用下沿水平面运动,在t0时刻撤去力F,其v-t图象如图所示.已知物体与水平面间的动摩擦因数为μ,则下列关于力F的大小和力F做功W的大小关系式正如图所示,质量m=1kg的小物体从倾角θ=37°的光滑斜面上A点静止开始下滑,经过B点后进入粗糙水平面(经过B点时速度大小不变而方向变为水平).AB=3m.试求:(1)小物体从A点开始运动有一个竖直放置的圆形轨道,半径为R,由左右两部分组成.如图所示,右半部分AEB是光滑的,左半部分BFA是粗糙的.现在最低点A给一个质量为m的小球一个水平向右的初速度,使小球如图所示,物体从光滑斜面上的A点由静止开始下滑,经过B点后进入水平面(设经过B点前后速度大小不变),最后停在C点.每隔0.2秒钟通过速度传感器测量物体的瞬时速度,下表给出据有关资料介绍,受控热核聚变装置中有极高的温度,因而带电粒子将没有通常意义上的“容器”可装,而是由磁场约束使其在某个区域内运动.现按下面的简化条件来讨论这个问题:如图如图所示,直线MN下方无磁场,上方空间存在两个匀强磁场,其分界线是半径为R的半圆,两侧的磁场方向相反且垂直于纸面,磁感应强度大小都为B.现有一质量为m、电荷量为q的带负以初速度V0竖直向上抛出一个小球,小球所受的空气阻力与速度大小成正比.将小球从抛出点上升至最高点的过程与小球从最高点落回至抛出点的过程作对比,下列说法正确的是()A.小在电梯中,把一重物置于台秤上,台秤与压力传感器相连,电梯由静止开始竖直上升过程中,传感器所受的压力与时间的关系(FN-t)图象如图所示,g取10m/s2由图象可知(1)电梯减速上如图所示,平板车质量为m,长为L,车右端(A点)有一个质量为M=2m的小滑块(可视为质点).平板车静止于光滑水平面上,小车右方足够远处固定着一竖直挡板,小滑块与车面间有摩擦,如图所示的电路中,两平行金属板A、B水平放置,两板间的距离d=40cm,板间分布有垂直于纸面向里的匀强磁场.电源电动势E=24V,内电阻r=1Ω,电阻R=15Ω.闭合开关S,待电路稳定后如图所示,竖直固定放置的粗糙斜面AB的下端与光滑的圆弧BCD的B点相切,圆弧轨道的半径为R,圆心O与A、D在同一水平面上,∠COB=θ,现有质量为m的小物体从距D点为Rcosθ4的地方无如图所示,放置在水平地面上的支架质量为M,支架顶端用细线拴着的摆球质量为m,现将摆球拉至水平位置,而后释放,摆球运动过程中,支架始终不动.以下说法正确的应是()A.在释质量为m=1kg的物体在水平面上,物体与水平面之间的动摩擦因数为μ=0.2.现对物体施加一个大小变化、方向不变的水平力F,为使物体在3s时间内发生的位移最大,力F的大小应如下面如图所示,MN、PQ是两块水平放置且长度相同的平行金属板,板间存在磁感应强度为B=1.25T的圆形匀强磁场,圆与两金属板相切.以圆上一点O为原点建立xoy直角坐标系,两板左端M、如图所示,竖直放置在水平面上的轻质弹簧上叠放着两物块A、B,两者的质量均为2kg,它们处于静止状态.若突然将一个大小为10N、方向竖直向下的力施加在物体A上,则此瞬间A对B的同学们在由静止开始向上运动的电梯里,把一测量加速度的小探头固定在一个质量为1kg的手提包上,到达某一楼层停止,采集数据并分析处理后列出下表:建立物理模型匀加速直线匀速如图所示,两个质量分别为m1=2kg、m2=3kg的物体置于光滑的水平面上,中间用轻质弹簧秤连接.两个大小分别为F1=30N、F2=20N的水平拉力分别作用在m1、m2上,则()A.弹簧秤的示数如图是一种升降电梯的示意图,A为载人箱,B为平衡重物,它们的质量均为M,由跨过滑轮的钢索系住,在电动机的牵引下使电梯上下运动.若电梯中乘客的质量为m,匀速上升的速度为如图所示,在内壁光滑的平底试管内放一个质量为m的小球,试管的开口端与水平轴O连接,试管底与O相距l,试管通过转轴带动在竖直平面内匀速转动.试求:(1)若转轴的角速度为ω,在从地面上以初速度v0竖直向上抛出一质量为m的球,若运动过程中受到的空气阻力与其速率成正比关系,球运动的速率随时间变化规律如图所示,t1时刻到达最高点,再落回地面,落地如图所示的坐标平面内,在y轴的左侧存在垂直纸面向外、磁感应强度大小B1=0.20T的匀强磁场,在y轴的右侧存在垂直纸面向里、宽度d=0.125m的匀强磁场B2.某时刻一质量m=2.0×1用手托几本书,下列哪种情况手对书本作用力最大()A.使书本匀速向上运动B.使书本匀速向下运动C.使书本匀加速水平运动D.使书本匀减速向上运动据中新社北京2月26日电,中国军队2013年将举行近40场军事演习,以提高信息化条件下威慑和实战能力.若在某次军事演习中,某空降兵从悬停在空中的直升飞机上跳下,从跳离飞机到甲乙两个同学共同做“验证牛顿第二定律”的实验,装置如图1所示.①两位同学用砝码盘(连同砝码)的重力作为小车(对象)受到的合外力,需要平衡桌面的摩擦力对小车运动的影响.他们将如图(a)所示,A、B为钉在光滑水平面上的两根铁钉,小球C用细绳拴在铁钉B上(细绳能承受足够大的拉力),A、B、C、在同一直线上.t=0时,给小球一个垂直于绳的速度,使小球绕着两如图所示,在倾角θ=37°的足够长的固定斜面上,有一质量m=1kg的物体,物体与斜面间动摩擦因数μ=0.2.物体受到沿平行于斜面向上的轻细线的拉力F=9.6N的作用,从静止开始运动,如图所示,水平传送带A、B两端相距x=3.5m,工件与传送带间的动摩擦因数为μ=0.1,工件滑上A端时的瞬时速vA=4m/s,到达B端的瞬时速度为vB,试求传送带以速度v顺时针方向运行一同学想研究电梯上升过程的运动规律.某天乘电梯上楼时他携带了一个质量为5kg的重物和一套便携式DIS实验系统,重物悬挂在力传感器上.电梯从第一层开始启动,中间不间断一直到如图所示,带正电小球质量为m=1×10-2kg,带电量为q=l×10-6C,置于光滑绝缘水平面上的A点.当空间存在着斜向上的匀强电场时,该小球从静止开始始终沿水平面做匀加速直线运动,在平直公路上,以速度v0=12m/s匀速前进的汽车,遇紧急情况刹车后,轮胎停止转动在地面上滑行,经过时间t=1.5s汽车停止,当地的重力加速度g取10m/s2.求:(1)刹车时汽车加速度如图所示,半径R=0.45m的光滑14圆弧轨道固定在竖直平面内,B为轨道的最低点,B点右侧的光滑的水平面上紧挨B点有一静止的小平板车,平板车质量M=2kg,长度为0.5m,小车的上如图所示为仓库中常用的皮带传输装置示意图,它由两台皮带传送机组成,一台水平,A、B两端相距3m,另一台倾斜,传送带与地面的倾角θ=37°,C、D相距4.45m,B、C相距很近.水平如图所示,质量均为m、电荷量均为q的带负电的一簇粒子从P1(-a,b)点以相同的速率v0在:xoy平面内朝x轴上方的各个方向射出(即0<θ≤π),不计重力及粒子间的相互作用,且已知a足够如图所示,劲度系数为k=200N/m的轻弹簧一端固定在墙上,另一端连一质量为M=8kg的小车a,开始时小车静止,其左端位于O点,弹簧没有发生形变,质量为m=1kg的小物块b静止于小车质量为0.6kg的物体在水平面上运动,如图所示的两条斜线分别是物体受水平拉力和不受拉力时的v-t图象,则下列说法正确的是()A.斜线①一定是物体受水平拉力时的图线B.斜线②一定山地滑雪是人们喜爱的一项体育运动.一滑雪坡由AB和BC组成,AB是倾角为37°的斜坡,BC是半径为R=5m的很小圆弧面,圆弧面和斜面相切于B,与水平面相切于c,如图所示,AB竖直高度如图口所示,一倾角为37°的传送带以恒定速度运行.现将一质量m=lkg的小物体抛上传送带,物体相对地面的速度随时间变化的关系如图b所示,取沿传送带向上为正方向,g=10m/s2,s如图所示,物块a放在轻弹簧上,物块b放在物块a上静止不动.当用力F使物块b竖直向上作匀加速直线运动,在下面所给的四个图象中.能反映物块b脱离物块a前的过程中力F随时间t变化如图所示,质量不等的两个物体A、B.在水平拉力F的作用下,沿光滑水平面一起向右运动,滑轮及细绳质量不计.则下列说法中正确的有()A.物体B所受的摩擦力方向一定向左B.物体B所如图是滑道压力测试的示意图,光滑圆弧轨道与光滑斜面相切,滑道底部B处安装一个压力传感器,其示数N表示该处所受压力的大小,某滑块从斜面上不同高度h处由静止下滑,通过B时一物体从静止开始,所受的合力F随时间t变化图线如图所示,规定向右为正方向.则该物体在4秒内的运动情况是()A.物体在1~3s内做匀变速直线运动B.物体在0~2s内向右运动,2~4s内向如图甲所示,在同一竖直平面内的两正对着的相同的半圆光滑轨道,相隔一定的距离x,虚线沿竖直方向.一小球能在其间运动,今在最高点与最低点各放-个压力传感器,测试小球对轨有一种大型游戏机叫“跳楼机”,参加游戏的游客被安全带固定在座椅上,由电动机将座椅沿光滑的竖直轨道提升到离地面40m高处,然后由静止释放.可以认为座椅沿轨道做自由落体运动2012年11月,我国舰载机在航母上首降成功.设某一载舰机质量为m=2.5×104kg,速度为v0=42m/s,若仅受空气阻力和甲板阻力作用,飞机将在甲板上以a0=0.8m/s2的加速度做匀减速运如图,细绳一端系着质量M=0.6kg的物体,静止在水平面,另一端通过光滑小孔吊着质量m=0.3kg的物体,M的中点与圆孔距离为0.2m,并知M和水平面的最大静摩擦力为2N,现使此平如图所示,人在岸上拉船,已知船的质量为m,水的阻力恒为f,当轻绳与水平面的夹角为θ时,船的速度为v,此时人的拉力大小为F,则()A.人拉绳行走的速度为vcosθB.人拉绳行走的速如图所示,将悬线拉至水平位置无初速释放,当小球到达最低点时,细线被一与悬点同一竖直线上的小钉B挡住的瞬间速度的大小不变,比较悬线被小钉子挡住的前后瞬间,①小球的角速如图所示,A、B两球完全相同,质量均为m,用两根等长的细线,悬挂在升降机的天花板上的O点,两球之间连着一根劲度系数为k的轻质弹簧.当升降机以加速度a竖直向上加速运动时,
牛顿第二定律的试题400
如图所示,重为100N的物体在水平向左的力F=20N作用下,以初速度v0沿水平面向右滑行.已知物体与水平面的动摩擦因数为0.2,则此时物体所受的合力为()A.20N,水平向左B.0C.20N如图所示,竖直平面xOy内存在水平向右的匀强电场,场强大小E=10N/c,在y≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T一带电量q=+0.2C、质量m=0.如图所示,足够长的木板质量M=10kg,放置于光滑水平地面上,以初速度v0=5m/s沿水平地面向右匀速运动.现有足够多的小铁块,它们的质量均为m=1kg,在木板上方有一固定挡板,当一物块静止在粗糙的水平桌面上.从某时刻开始,物块受到一方向不变的水平拉力作用.假设物块与桌面间的最大静摩擦力等于滑动摩擦力.以a表示物块的加速度大小,F表示水平拉力的一质量m=2.0kg的小物块以一定的初速度冲上一个足够长的倾角为37°的固定斜面,某同学利用传感器测出了小物块冲上斜面过程中多个时刻的瞬时速度,并用计算机做出了小物块上滑如图1所示,M、N为竖直放置的平行金属板,两板间所加电压为U0,S1、S2为板上正对的小孔.金属板P和Q水平放置在N板右侧,关于小孔S1、S2所在直线对称,两板的长度和两板间的距一轻质细绳一端系一质量为m=120kg的小球A,另一端挂在光滑水平轴O上,O到小球的距离为L=0.1m,小球跟水平面接触,但无相互作用,在球的两侧等距离处分别固定一个光滑的斜面如图所示,竖直平面(纸面)内有直角坐标系xOy,x轴沿水平方向.在x≤O的区域内存在方向垂直于纸面向里,磁感应强度大小为B1的匀强磁场.在第二象限紧贴y轴固定放置长为l、表面粗近来,我国多个城市开始重点治理“中国式过马路”行为.每年全国由于行人不遵守交通规则而引发的交通事故上万起,死亡上千人.只有科学设置交通管制,人人遵守交通规则,才能保证一电荷量为q(q>0)、质量为m的带电粒子在匀强电场的作用下,在t=0时由静止开始运动,场强随时间变化的规律如图所示.不计重力,求在t=0到t=T的时间间隔内(1)粒子位移的大小和方如图所示,倾角为α足够大的光滑斜面上,有一个xOy坐标系,x轴沿水平方向.若将光滑金属小球从O点分别施以不同的初始运动条件,关于其后运动规律,下列分析不正确的有()A.将小如图所示,在电风扇的叶片上距转轴为r处固定了一个质量为m的铁块,电扇启动后,铁块以角速度ω绕轴O匀速转动,则电风扇对地面的最大压力和最小压力的差为多大?如图所示,水平转盘上放有质量为m的物体,当物块到转轴的距离为r时,连接物块和转轴的绳刚好被拉直(绳上张力为零).物体和转盘间的最大静摩擦力是其正压力的μ倍.求:(1)当转盘如图甲所示,水平地面上有一块质量M=1.6kg,上表面光滑且足够长的木板,受到大小F=10N、与水平方向成37°角的拉力作用,木板恰好能以速度v0=8m/s水平向右匀速运动.现有很多个在水平直线马路上,质量为1.0×l03kg的汽车,发动机的额定功率为6.0×l04W,汽车开始由静止以a=1m/s2的加速度做匀加速运动,运动中所受摩擦阻力大小恒为2000N,当汽车达到额设想将来某一天载人飞船在火星上着陆后,宇航员用测力计测得质量为m的物块重力为P,宇航员将物块放于半径为R的半球顶端时发现若给物块一个合适的初速度时,物块对球顶刚好无假设地球是一半径为R、质量分布均匀的球体.一矿井深度为d.已知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之比为()A.1-dRB.1+dRC.(R-dR)2D.(一摩托车在竖直的圆轨道内侧做匀速圆周运动,周期为T,人和车的总质量为m,轨道半径为R,车经最高点时发动机功率为P0,车对轨道的压力为2mg.设轨道对摩托车的阻力与车对轨道如图所示,虚线OL与y轴的夹角为θ=60°,在此角范围内有垂直于xOy平面向外的匀强磁场,磁感应强度大小为B.一质量为m、电荷量为q(q>0)的粒子从左侧平行于x轴射入磁场,入射点为如图所示为某工厂的货物传送装置,水平运输带与一斜面MP连接,运输带运行的速度为v0=5m/s.在运输带上的N点将一小物体轻轻的放在上面,N点距运输带的右端x=l.5m,小物体的质一质点做圆周运动,速度处处不为零,则()A.任何时刻质点所受的合力一定为零B.任何时刻质点的加速度一定不为零C.质点速度的大小一定不断地变化D.质点速度地方向一定不断地变化质量相等的两汽车以相同的速度v分别通过半径为R的凸形路面P与凹形路面P′时两路面所受的压力之比为FP:FP′=______.如图所示,某轻杆一端固定一质量为m的小球,以另一端O为圆心,使小球在竖直平面内做半径为R的圆周运动,以下说法中正确的是()A.小球过最高点时,杆所受的弹力可以为零B.小球如图所示,一轻绳吊着粗细均匀的棒,棒下端离地面高H,上端套着一个细环,棒和环的质量均为m,相互间最大静摩擦力等于滑动摩擦力,大小为kmg(k>1).断开轻绳,棒和环自由下落蹦床比赛分成预备运动和比赛动作.最初,运动员静止站在蹦床上;在预备运动阶段,他经过若干次蹦跳,逐渐增加上升高度,最终达到完成比赛动作所需的高度;此后,进入比赛动作如图所示,在竖直平面内,粗糙的斜面轨道AB的下端与光滑的圆弧轨道BCD相切于B,C是最低点,圆心角∠BOC=37°,D与圆心O等高,圆弧轨道半径R=1.0m,现有一个质量为m=0.2kg可视物体在与初速度始终在同一直线上的合外力F的作用下运动.取vo方向为正时,合外力F随时间t的变化情况如图所示,则在O-t2这段时间内()A.物体的加速度先减小后增大,速度也是先减质量为M=150g的长木板静止放在光滑的水平面上,在长木板的上方有如图所示的匀强电场和匀强磁场,E=2N/C,B=1.25T,AC段是光滑的,CDF段滑动摩擦因数µ=0.5,CD段的长度L=0.如图所示,车厢里悬挂着两个质量不同的小球,上面的球比下面的球质量大,当车厢向右作匀加速运动(空气阻力不计)时,下列各图中正确的是()A.B.C.D.如图甲所示,在粗糙的水平面上,物块A在水平向右的外力F的作用下做直线运动,其v-t图象如图乙中实线所示,下列判断中正确的是()A.在0~ls内,外力F不断增大B.在l~3s内,外力F如图所示,质量均为m的A、B两球之间系着一根不计质量的弹簧,放在光滑的水平面上,A球紧靠竖直墙壁.今用水平力F将B球向左推压弹簧,平衡后,突然将F撤去,在这一瞬间,表述正如图所示,一重为10N的小球,在F=20N的竖直向上的拉力作用下,从A点由静止出发向上运动,F作用1.2s后撤去,已知杆与球间的动摩擦因数为36,试求从撤去力F开始计时,小球经多如图所示,直角坐标系xoy所决定的平面内,在平行于x轴的虚线MN上方、x<0的区域存在着沿x轴正方向的匀强电场;在x>0的某区域存在方向垂直于坐标平面的圆形有界匀强磁场(图中未质量为m的汽车在平直公路上由静止开始启动做直线运动,汽车所受阻力f不变,从启动时刻起计时,汽车功率P随时间t变化的图线如图所示.下列判断正确的是()A.汽车先做加速度减小如图所示,不可伸缩、质量不计的细线跨过同一高度处的两个光滑定滑轮连接着质量相同的物体A和B,A套在光滑水平杆上,物体、细线、滑轮和杆都在同一竖直平面内,水平细线与杆两个靠得很近的天体,离其它天体非常遥远,它们以其连线上某一点O为圆心各自做匀速圆周运动,两者的距离保持不变,科学家把这样的两个天体称为“双星”,如图所示.已知双星的质如图所示,一轻质弹簧一端固定在竖直墙壁上,另一自由端位于O点,现用一滑块将弹簧的自由端(与滑块未拴接)从O点压缩至A点后于t=0时刻由静止释放,滑块t1时刻经过O点,t2时刻如图所示,在倾角为θ=30°的光滑斜面上有两个用轻质弹簧相连接的物块A、B,它们的质量均为m,弹簧的劲度系数为k,C为一固定挡板,系统处于静止状态.现开始用一沿斜面方向的力已知一足够长的传送带与水平面的倾角为θ,以一定的速度匀速运动.某时刻在传送带适当的位置放上具有一定初速度的物块(如图甲所示),以此时为t=0时刻纪录了小物块之后在传送带如图所示,一个粗糙的水平转台以角速度ω匀速转动,转台上有一个质量为m的物体,物体与转台问用长L的绳连接着,此时物体与转台处于相对静止,设物体与转台间的动摩擦因数为μ,如图是一汽车在平直路面上启动的速度一时间图象,t1时刻起汽车的功率保持不变,由图象可知()A.0-t1时间内,汽车的牵引力增大,加速度增大,功率不变B.0-t1时间内,汽车的牵引如图所示,一小球质量为m,用长为L的细线悬于O点,在O点正下方12L处钉有一根长钉.把悬线沿水平方向拉直后无初速度释放,当悬线碰到钉子的瞬时()A.小球的线速度突然增大B.悬线如图所示,A、B两球质量相等,且由轻质细杆连着,绕O点在光滑的水平面上以相同的角速度做匀速圆周运动,OB=BA,则()A.两段杆的拉力之比:TAB:TOB=2:1B.两段杆的拉力之比:TAB:质量为m的物体在光滑水平面上以速度v1匀速运动,受到一个跟水平方向成α角斜向上的拉力作用后,经一段时间速度变为v2,如图所示.求这段时间内拉力的冲量?(用本题中的符号表示如图所示,可以视为质点的小金属块A的质量为m1=1kg,放在厚度不计的长木板A的右端,木板长L=2m、质量m2=2kg,A与B之间的动摩擦因数μ1=0.1,A、B与水平面之间的动摩擦因数均如图所示,质量M=10kg,上表面光滑的足够长的木板在F=50N的水平拉力作用下,以v0=5m/s的速度沿水平地面向右匀速运动.现有两个小铁块,它们的质量均为m=1kg.在某时刻将第一个如图所示,平行导轨MN和PQ相距0.5m,电阻可忽略.其水平部分是粗糙的,置于0.60T竖直向上的匀强磁场中,倾斜部分是光滑的,该处没有磁场.导线a和b质量均为0.20kg,电阻均为如图甲所示为学校操场上一质量不计的竖直滑竿,滑竿上端固定,下端悬空.为了研究学生沿竿的下滑情况,在竿顶部装有一拉力传感器,可显示竿顶端所受拉力的大小.现有一质量为5如图所示,圆心在O点,半径为R=0.24m的圆弧形支架abc竖直固定在水平桌面上,支架最低点a与桌面相切,最高点c与O点的连线Oc与Oa夹角为60°.一轻绳两端系着质量分别为m1和m2的如图所示,ABC为固定在竖直面内的光滑四分之一圆轨道,其半径为r=10m,N为固定在水平面内的半圆平面,其半径为R=10πm,轨道ABC与平面N相切于c点,DEF是包围在半圆平面N周围且如图所示,在倾角为30°的斜面OA的左侧有一竖直档板,其上有一小孔P,OP=0.5m.现有一质量m=4×10-20kg,带电量q=+2×10-14C的粒子,从小孔以速度v0=3×104m/s水平射向磁感应强度如图所示,质量为m=1kg的滑块,在水平力作用下静止在倾角为θ=30°在光滑斜面上,斜面的末端B与水平传送带相接(物块经过此位置滑上皮带时无能量损失),传送带的运行速度为v0=3一质量为m的物体,在几个共点力的作用下静止在光滑的水平桌面上,现把其中一个水平方向的力F突然增大到3F,保持其它力不变,则在ts末该力的功率为()A.9F2mtB.6F2mtC.4F2mtD.如图甲所示,水平面被竖直线PQ分为左右两部分,左部分光滑,范围足够大,上方存在水平向右的匀强电场.右部分粗糙,一质量为m=2kg,长为L的绝缘体制成的均匀带电的直棒AB置于如图的环状轨道处于竖直面内,它由半径分别为R和2R的两个半圆轨道、半径为R的两个四分之一圆轨道和两根长度分别为2R和4R的直轨道平滑连接而成.以水平线MN和PQ为界,空间分为如图,两人对拉质量为m=50Kg的小车,F1=300N,F2=100N,小车加速度的方向______,加速度的大小______.一个物体从长9m、倾角为37°的斜面顶端由静止开始滑下,已知物体与斜面间的动摩擦因数为0.5,求物体滑到斜面底端时所用的时间和速度.如图所示,在车厢中,一小球被a、b两根轻质细绳拴住,其中a绳与竖直方向成α角,绳b成水平状态,已知小球的质量为m,求:(1)车厢静止时,细绳a和b所受到的拉力.(2)当车厢以一定如图所示,物体m恰能沿静止的斜面匀速下滑,现用一个力F作用在物体上,力F过物体的重心,且方向竖直向下,则下列说法不正确的是()A.物体对斜面的压力增大B.物体将沿斜面加速如图所示,用F=10N的水平拉力,使物体由静止开始沿水平地面做匀加速直线运动.已知物体的质量m=2.0kg,物体与地面间的摩擦力4N,求:(1)物体在t=2.0s时速度v大小.(2)物体在前如图所示,固定在竖直平面内的光滑圆弧形轨道ABCD,半径为R,其A、C点与圆心等高,D点为轨道最高点.现使小球自A点正上方某处由静止释放,从A点进入圆轨道运动,小球恰好能通如图所示,质量为2kg的物体静止于水平面上,物体与水平面间的动摩擦因数为0.5,物体受到大小为10N,与水平方向成37°角斜向上的拉力F作用时沿水平面做匀加速运动,求物体4s末在水平地面上有一质量为4kg的物体,它受到与水平方向成37°角,大小为25N的斜向上拉力时,恰好做匀速直线运动,取g=10m/s2,求:当拉力为50N时,加速度为多大?在消防演习中,消防队员从一根竖直的长直轻绳上由静止滑下,经一段时间(2.5s)落地.为了获得演习中的一些数据,以提高训练质量,研究人员在轻绳上端安装一个力传感器并与数据如图所示,在沿水平方向的匀强电场中有一固定点O,用一根长度为L=0.40m的绝缘细线把质量为m=0.10kg、带有正电荷的金属小球挂在O点,小球静止在B点时细线与竖直方向的夹角为质量分别为m和M的两物体叠放在水平面上如图所示,两物体之间及M与水平面间的动摩擦因数均为μ.现对M施加一个水平力F,则以下说法中正确的是()A.若两物体一起向右匀速运动,则如图所示,传送带不动时,物体由皮带顶端A从静止开始下滑到皮带底端B用的时间为t,则()A.当皮带向上运动时,物块由A滑到B的时间一定大于tB.当皮带向上运动时,物块由A滑到B的力F1单独作用于一物体时,使物体产生的加速度大小为a1=2m/s2,力F2单独作用于同一物体时,使物体产生的加速度大小为a2=4m/s2.当F1和F2共同作用于该物体时,物体具有的加速度如图所示,小木块在沿斜面向上的恒定外力F作用下,从A点由静止开始做匀加速运动,前进了0.45m抵达B点时,立即撤去外力.此后小木块又前进0.15m到达C点,速度为零.已知木块与将质量为1kg的物块A用一轻杆拴在质量为2kg的倾角为37°的斜面B上,轻杆与斜面平行,如图所示,C是铰链,杆可绕C点转动,所有接触面光滑,(g=10m•s-2)求:(1)当给斜面水平向左的如图所示,A、B两物体的质量分别为m和2m,中间用轻弹簧相连,A、B两物体与水平面间的动摩擦因数均为μ,在水平推力F作用下,A、B一起以加速度a向右做匀加速直线运动.当突然撤一宇航员抵达一半径为R的星球两极的表面后,为了测定该星球的质量M,做如下的实验,取一根细线穿过光滑的细直管,细线一端栓一质量为m的砝码,另一端连在一固定的测力计上,如图所示,一个半径R=1.0m的圆弧形光滑轨道固定在竖直平面内,轨道的一个端点B和圆心O的连线与竖直方向夹角θ=60°,C为轨道最低点,D为轨道最高点.一个质量m=0.50kg的小球(如图所示,质量m=1kg的小球套在细斜杆上,斜杆与水平方向成α=37°角,球与杆之间的动摩擦因数μ=0.5,小球在水平向右的拉力F=20N作用下沿杆向上滑动,g=10m/s2,sin37°=0.6,如图所示,水平地面上质量为M=3kg的物块,在大小为F=16N、方向与水平方向成θ=37°的拉力作用下沿地面向右作匀加速直线运动.若木块与地面之间的动摩擦因数为μ=13,(g=10m/s2,如图所示,竖直平面内有一半径为R的半圆形光滑绝缘轨道,其底端B与光滑绝缘水平轨道相切,整个系统处在竖直向上的匀强电场中,一质量为m,电荷量为q带正电的小球以v0的初速度质量为30kg的小孩坐在10kg的雪橇上,大人用与水平方向成37°斜向上的拉力拉雪橇,拉力的大小为200N,雪橇与地面间的动摩擦因数为0.2,(取sin37°=0.6,cos37°=0.8,取取重力一水平传送带以2m/s的速度顺时针匀速运动,传送带两端距离为S=20m,将一物体轻轻放在传送带一端,物体由这一端运动到另一端所需时间t=11s,求物体与传送带间动摩擦因数为多大在地面上方足够高的地方,存在一个高度d=0.3m的“相互作用区域”(如图中划有虚线的部分).一个小圆环A套在一根均匀直杆B上,A和B的质量均为m,若它们之间发生相对滑动时,会产如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg,木板的质量M=4kg,长L=1m,木板上表面与物块、下表面与地面之间的动摩擦因数均为μ=如图所示,在竖直平面内,虚线MO与水平线PQ相交于O,二者夹角θ=30°,在MO左侧存在电场强度为E、方向竖直向下的匀强电场,MO右侧某个区域存在磁感应强度为B、垂直纸面向里的匀如图a所示,一轻质弹簧的下端固定在水平面上,上端放置一质量为2kg的物体(物体与弹簧不连接),初始时物体处于静止状态.现用竖直向上的拉力F作用在物体上,使物体开始向上做匀汽车以一定速率通过拱桥时,下列说法中正确的是()A.在最高点汽车对桥的压力大于汽车的重力B.在最高点汽车对桥的压力等于汽车的重力C.在最高点汽车对桥的压力小于汽车的重力D长度为0.5m的轻质细杆OA,A端有一质量为3kg的木球,以O点为圆心,在竖直面内做圆周运动,如图所示,小球通过最高点的速度为2m/s,取g=10m/s2,则此时轻杆OA()A.受到6N的拉力如图所示,左侧为二块长为L=10cm,间距d=1033cm的平行金属板,加上U=13×104V的电压,上板电势高;现从左端沿中心轴线方向入射一个重力不计的带电微粒,微粒质量m=10-10kg,带一轻弹簧的上端固定,下端悬挂一个重物.重物静止时,弹簧伸长了8cm.若再将重物向下拉4cm,然后放手,则在释放重物的瞬间,重物的加速度的大小是()A.g4B.g2C.3g2D.g一物体从静止开始,以a=2m/s2的加速度做匀加速直线运动,求:(1)经过2s物体的速度为多大?(2)3s内物体的位移为多大?(3)物体通过l6m位移需经过多少时间?停在水平地面上的小车内,用绳子AB、BC栓住一个重球,绳BC呈水平状态,绳AB的拉力为T1,绳BC的拉力为T2.若小车由静止开始加速向左运动,但重球相对小车的位置不发生变化,则质量为200kg的物体置于升降机内的台秤上,从静止开始上升,运动过程中台秤示数F与时间t的关系如图所示.求各段时间内升降机的加速度和整个过程中升机上升的高度(g取10m/s2).如图所示,海豹突击队从悬停在空中离地106米高的直升机上沿绳下滑进行速降训练.某突击队员和他携带的武器装备的总质量共为100kg,该队员轻握绳索时可获得200N的摩擦阻力,g取(多选题)“蹦极”是当前在青年人中流行的一种惊险、刺激的运动.跳跃者把一端固定的长弹性绳绑在踝关节等处,从几十米高处跳下的一种极限运动.如图所示是某运动员做蹦极运动的v如图所示,质量分别为m、2m的球A、B,由轻质弹簧相连后再用细线悬挂在正在竖直向上做匀减速运动的电梯内,细线承受的拉力为F,此时突然剪断细线,那么在细线断的瞬间,弹簧的如图所示,在光滑水平面上放一质量为m斜面体A,在A的斜面上又放一质量也为m的滑块B;用力F推滑块A使两者无相对滑动地向前加速运动,则对两物体所受的合力下列说法正确的是()游客乘坐过山车时,在圆弧轨道最低点处获得的向心加速度达到2g(g为重力加速度),那么在此位置时座椅对游客的作用力相当于游客重力的()A.1倍B.2倍C.3倍D.4倍质量为800kg的小汽车驶过一半径为50m的圆形拱桥,到桥顶时的速度为5m/s,g=10m/s2,求:(1)此时汽车对桥的压力.(2)若汽车到达桥顶时对桥的压力为零,且车不脱离桥面,到达桥顶如图所示,质量为m的小球A穿在绝缘细杆上,杆的倾角为α,小球A带正电,电量为q,在杆上B点处固定一个电量为Q的正电荷.将A由距B竖直高度为H处无初速释放,小球A下滑过程中电量A如图所示,质量为2千克的物体,在竖直平面内高h=0.8米的光滑弧形轨道A点,由静止起沿轨道滑下,并进入BC轨道.已知BC段的动摩擦因数µ=0.4,求(1)物体滑至B点时的速度;(2)B卡车质量为1×103kg,发动机最大输出功率为84kW.卡车由静止出发,开上倾角为30°的斜坡,已知摩擦力为车重的0.1倍.(1)求卡车在坡路上匀速行驶的最大速度;(2)如果卡车在坡路质量分别为40kg和50kg的甲、乙两个小孩,都穿着冰鞋在溜冰场的冰面上,若甲小孩用20N的水平力推开乙小孩,则甲小孩的加速度为______m/s2,乙小孩的加速度为______m/s2.某同学从五楼的阳台处释放两个易拉罐,一个盛满水、一个是空的,他发现空易拉罐比盛满水的易拉罐晚落地一段时间,他想这一定是空气阻力引起的,于是他设计了一个测定空易拉罐