动能定理的试题列表
动能定理的试题100
如图所示,固定在竖直平面内的光滑半圆形轨道与粗糙水平轨道在B点平滑连接,轨道半径R=0.5m,一质量m=0.2kg的小物块(可视为质点)放在水平轨道上的A点,A与B相距L=10m,物块如图所示,用与水平成53°的力F将质量为m=6kg的静止物体从水平面上的A点拉到B点,AB=15m,物体与水平面间的动摩擦因数为μ=0.5.然后撤去水平力,物体冲上高为H=5m的光滑的斜面NBA篮球赛非常精彩,吸引了众多观众.经常有这样的场面:在临终场0.1s的时候,运动员把球投出且准确命中,获得比赛的胜利.如果运动员投篮过程中对篮球做功为W,出手高度为h1,在平行板电容器之间有匀强电场,一带电粒子以速度v垂直电场线射入电场,在穿越电场的过程中,粒子的动能由Ek增加到2Ek,若这个带电粒子以速度2v垂直进入该电场,则粒子穿出电如图所示,半径分别为R和r的甲、乙两个光滑的圆形轨道置于同一竖直平面上(R>r),两圆形轨道之间用一条水平粗糙轨道CD连接,轨道CD与甲乙两个圆形轨道相切于C、D两点.现有一小一种氢气燃料的汽车,质量为m=2.0103kg,发动机的额定输出功率为80kW,行驶在平直公路上时所受阻力恒为车重的0.1倍.若汽车从静止开始先匀加速启动,加速度的大小为a=1.0m加速上升的电梯顶部悬有一轻质弹簧,弹簧下端挂有一铁块,若电梯突然停止,以电梯底板为参照物,铁块在继续上升的过程中()A.动能先增大后减小B.动能逐渐减小C.加速度逐渐增大如图所示,在抗洪救灾中,一架直升机通过绳索,用恒力F竖直向上拉起一个漂在水面上的木箱,使其由水面开始加速上升到某一高度,若考虑空气阻力而不考虑空气浮力,则在此过程一物体静止在光滑水平面上,同时受到两个方向相反的水平拉力F1、F2的作用,Fl、F2随位移变化,如图所示.则物体的动能将()A.一直变大,至20m时达最大B.一直变小,至20m时达最物体在合外力作用下做直线运动的v-t图象如图所示.下列表述正确的是()A.在0-1s内,合外力做正功B.在1-2s内,合外力做负功C.在1-3s内,合外力不做功D.在0-3s内,合外力总是做正如图所示,光滑水平面右端B处连接一个竖直的半径为R的光滑半圆固定轨道,在离B距离为Χ的A点,用水平恒力将质量为m的质点从静止开始推到B处后撤去恒力,质点沿半圆轨道运动到如图所示,光滑14圆弧的半径为0.8m,有一质量为1kg的物体自A点从静止开始下滑到B点,然后沿水平面前进4m,到达C点停止.g取10m/s2,求:(1)物体到达B点时的速率;(2)在物体沿如图所示,质量为m的滑块在离地面高H=0.45m的光滑弧形轨道AB上由静止开始下滑求:(1)滑块到达轨道底端B时的速度大小为多大?(2)如果滑块在水平面上滑行的最大距离是2.25m,则木块受水平力F=20N作用在水平面上由静止开始运动,前进2m后撤去F,木块又沿原方向滑行了6m后停了下来,求:(1)木块所受的摩擦力大小;(2)木块的最大动能.在竖直平面内有一个粗糙的14圆弧轨道,其半径R=0.4m,轨道的最低点距地面高度h=0.8m.一质量m=0.1kg的小滑块从轨道的最高点由静止释放,到达最低点时以一定的水平速度离开一物体静止在升降机的地板上,在升降机加速上升的过程中,地板对物体的支持力所做的功等于()A.物体势能的增加量B.物体动能的增加量C.物体动能的增加量加上物体势能的增加量D滑板运动是一项惊险刺激的运动,深受青少年的喜爱.如图所示是滑板运动的轨道,AB和CD是一段圆弧形轨道,BC是一段长4m的水平轨道.一运动员从AB轨道上P点以6m/s的速度下滑经BC一质量为m的小球,用长为L的轻绳悬挂于O点,小球在水平力F作用下,从平衡位置P很缓慢地移动到Q点,如图所示,则力F所做的功为()A.mgLcosθB.mgL(1-cosθ)C.FLsinθD.FL(1-cosθ)如图BCD为一半径为R的光滑圆弧面的一部分,C为圆弧的最低点,BD的连线与水平地面平行,∠BOD=106°,AB与圆弧BCD相切于B点,DE与圆弧BCD相切于D点.今将一质量为m的小物块(可视一质量为1kg的物体从静止开始匀加速竖直下落,经2s落地,落地时的速度大小为18m/s,若重力加速度g取10m/s2,则()A.物体的重力势能减少了200JB.重力对物体做功180JC.物体的机如图所示,滑块质量为m,受一大小为3mRg水平冲量后,沿动摩擦因数为0.1的水平地面滑行5R,并冲上一半径为R的光滑14圆弧,在圆弧边沿正上方R高处有一旋转圆形平台,平台上沿长为L的轻绳一端固定在O点,另一端栓一质量为m的小球,将小球拉到最高点A点,以v0=(gL2)12的水平速度推出,求小球经过最低点时绳子的拉力大小?(分别用动能定理和机械能守恒定如图所示为某探究活动小组设计的节能运输系统.斜面轨道倾角为30°,质量为M的木箱与轨道的动摩擦因数为μ=36.木箱在轨道顶端时,自动装货装置将质量为m的货物装入木箱,然后木如图所示,滑块在恒定外力F=1.5mg的作用下从水平轨道上的A点由静止出发到B点时撤去外力,又沿竖直面内的光滑半圆形轨道运动,且恰好通过轨道最高点C,滑块脱离半圆形轨道后如图所示,一物体在一水平恒力的作用下在光滑的水平面内做曲线运动,当物体从M点运动到N点时,其速度方向恰好改变了900,则()A.物体在M点的速度vM一定大于N点的速度vNB.物体如图为车站使用的水平传送带装置的示意图,绷紧的传送带始终保持8.0m/s的恒定速率运行,传送带的水平部分AB距水平地面的高度h=0.45m,现有一质量为m=10kg的行李包(可视为质假定地球、月球都静止不动,用火箭从地球沿地月连线发射一探测器.假定探测器在地球表面附近脱离火箭.用W表示探测器从脱离火箭处飞到月球的过程中克服地球引力做的功,用Ek表质量m=2kg的物体以50J的初动能在粗糙的水平地面上滑行,其动能与位移关系如图所示,则物体在水平面上的滑行时间t为()A.5sB.22sC.4sD.2s装有装饰材料的木箱A质量为50kg,放在水平地面上,要将它运送到90m远处的施工现场.如果用500N的水平恒力作用6s钟使A从静止开始运动直至到达施工现场.求:(1)木箱与地面间的动跳水运动员从脚底高于水面H=10米的跳台自由落下,假设运动员的质量m=60千克,其体形可等效为一长度L=1.0米、直径d=0.30米的圆柱体,略去空气阻力.运动员入水后,水的等效阻如图所示小球沿水平面通过O点进入半径为R的半圆弧轨道后恰能通过最高点P,然后落回水平面,不计一切阻力,下列说法正确的是()A.小球落地点离O点的水平距离为RB.小球落地点时某滑板爱好者在离地h=1.8m高的平台上滑行,水平离开A点后落在水平地面的B点,其水平位移x1=3m,着地时由于存在能量损失,着地后速度变为v=4m/s,并以此为初速沿水平地面滑行如图所示,ACB为光滑圆弧轨道其半径为R,O为其圆心,OD为水平台面.AF为光滑水平面且与圆弧ACB光滑连接.已知:在DFAO区域存在水平向左的匀强电场,场强大小为E1,AOB右侧空间存如图所示,皮带的速度是3m/s,两圆心距离s=4.5m,现将m=1kg的小物体轻放在左轮正上方的皮带上,物体与皮带间的动摩擦因数μ=0.15,电动机带动皮带将物体从左轮运送到右轮正如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角θ,导轨间距l,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度为B,方向垂直斜面向上.将甲乙两电阻阻值质量不同而具有相同动能的两个物体,在动摩擦因数相同的水平面上滑行到停止,则()A.质量大的滑行的距离大B.质量大的滑行的时间长C.质量大的滑行的加速度小D.它们克服阻力做的(1)质量为2kg的物体,速度由3m/s增大为6m/s,它的动量和动能各增大为原来的几倍?(2)质量为2kg的物体速度由向东的3m/s变为向西的3m/s,它的动量和动能是否变化了?(3)A物体的质如图所示,电子从静止开始,被U1=1000V的电压加速,然后垂直进入场强E=500N/C的匀强偏转电场,已知偏转电极长L=6cm,求:(1)电子被U1加速后的动能,(2)电子离开偏转电场后速度如图所示,质量m=50kg的运动员(可视为质点),在河岸上A点紧握一根长L=5.0m的不可伸长的轻绳,轻绳另一端系在距离水面高H=10.0m的O点,此时轻绳与竖直方向的夹角为θ=37°,C一颗子弹以水平速度v射入一树干中,射入深度为s,设子弹在树干中所受到的阻力为一恒力,那么子弹以v2的速度射入树干中,射入的深度为()A.sB.s2C.s2D.s4如图所示,R1=R2=R3=R4=R,开关S闭合时,间距为d的平行板电容器C的正中间有一质量为m,带电荷量为q的小球恰好处于静止状态.开关S断开时,小球向电容器一个极板运动并发生碰撞如图所示,一电子(质量为m,电量为e)以初速度v0沿与场强垂直的方向从A点飞入匀强电场,当它从B点飞出时,速度方向与场强方向成150°角.则此过程中电场力作功为______J;A、B两法国人劳伦特•菲合尔在澳大利亚的伯斯冒险世界进行了超高特技跳水表演,他从30m高的塔上跳下,准确地落入水池中,若已知水对他的阻力(包括浮力)是他重力的3.5倍,他在空中时质量为2×103kg,发动机额定功率为80kW的汽车在平直公路上行驶;若汽车所受阻力大小恒为4×103N,则下列判断中正确的有()A.汽车的最大动能是4×105JB.汽车以加速度2m/s2匀加速启质量为M的小物块A静止在离地面高h的水平桌面的边缘,质量为m的小物块B沿桌面向A运动并以速度v0与之发生正碰(碰撞时间极短).碰后A离开桌面,其落地点离出发点的水平距离为L.碰FALSE如图所示,质量m=2.0kg的物体在恒力F=20N作用下,由静止开始沿水平面运动x=1.0m,力F与水方向的夹角α=37°,物体与水平面间的动摩擦因数μ=0.5,求该过程中:(sin37°=0.6,如图所示,光滑水平面上静止放置着一辆平板车A.车上有两个小滑块B和C(都可视为质点),B与车板之间的动摩擦因数为μ,而C与车板之间的动摩擦因数为2μ,开始时B、C分别从车板的如图所示,一个内壁光滑的绝缘细直管竖直放置.在管子的底部固定一电荷量为Q(Q>0)的点电荷.在距离底部点电荷为h2的管口A处,有一电荷量为q(q>0)、质量为m的点电荷由静止释放,如图所示,水平桌面离地面高h=1.25m.小物块A静止在桌面上,距右边缘l=1m,小物块B从桌面的左边缘向A运动,并与之发生正碰(碰撞时间极短).碰后A从桌面的右边缘以垂直边缘的速如图所示,光滑水平轨道与半径为R的光滑竖直半圆轨道在B点平滑连接.在过圆心O的水平界面MN的下方分布有水平向右的匀强电场.现有一质量为m,电量为+q的小球从水平轨道上A、点如图所示,abcd是一个正方形盒子.cd边的中点有一个小孔e.盒子中有沿ad方向的匀强电场.一个质量为m带电量为q的粒子从a处的小孔沿ab方向以初速度v0射入盒内,并恰好从e处的小孔如图所示,两半径分别为r1、r2的半圆形钢管(内径很小)竖直立起,管面光滑.现让一质量为m的小球由地面以速度v0进入管口.小球最终刚好停留在管道的最高点.求:(1)入射速度v0(2)如图所示,一质量M=2.0kg的长木板静止放在光滑水平面上,在木板的右端放一质量m=1.0kg可看作质点的小物块,小物块与木板间的动摩擦因数为μ=0.2.用恒力F向右拉动木板使木板如图,A、B两点所在的圆半径分别为r1和r2,这两个圆为同心圆,圆心处有一带正电为+Q的点电荷,内外圆间的电势差为U.一电子仅在电场力作用下由A运动到B,电子经过B点时速度为如图所示在足够长的光滑水平面上有一静止的质量为M的斜面,斜面表面光滑、高度为h、倾角为θ.一质量为m(m<M)的小物块以一定的初速度沿水平面向右运动,不计冲上斜面过程中的机如图所示为示波管的示意图,竖直偏转电极的极板长l=4.0cm,两板间距离d=1.0cm,极板右端与荧光屏的距离L=18cm.由阴极发出的电子经电场加速后,以v=1.6×107m/s沿中心线进入质量为m的物块在平行于斜面的力F作用下,从固定斜面的底端A由静止开始沿斜面上滑,经B点时速率为v,此时撤去F,物块滑回斜面底端时速率也为v,斜面倾角为θ,A、B间距离为x,如图,一物块以150J的初动能从斜面底端A沿斜面向上滑动,到B时动能减少90J,机械能减少30J.求:(1)第一次到达最高点时的重力势能为多少?(取斜面底端为零势点)(2)若回到A时和挡如图所示,一质量为m的物体以某一初速度冲上倾角为30°的固定斜面,物体的加速度为35g(g为重力加速度),物体沿斜面上升的最大高度为h,则物体在一这过程中动能损失了______,两套完全相同的小物块和轨道系统固定在水平桌面上.物块质量m=1kg,轨道长度l=2m,物块与轨道之间动摩擦因数μ=0.2.现用水平拉力F1=8N、F2=4N同时拉两个物块,分别作用一段距如图所示,两个相同的木盒置于同一粗糙的水平面上.木盒1中固定一质量为m的砝码,在木盒2上持续施加竖直向下的恒力F(F=mg).现给它们一相同的初速度,木盒1、2滑行的最远距离分如图所示,静止在粗糙水平面上的斜面体有三个光滑斜面AB、AC和CD.已知斜面AB与水平方向成37°角,斜面AC与水平方向成53°角,斜面CD与水平方向成30°角,A点与C点的竖直高度为h如图所示,一个半径为R=1.00m粗糙的14圆弧轨道,固定在竖直平面内,其下端切线是水平的,轨道下端距地面高度h=1.25m.在轨道末端放有质量为mB=0.30kg的小球B(视为质点),B如图所示,在光滑小滑轮C正下方相距h的A处固定一电量为Q的点电荷,电量为q的带电小球B,用绝缘细线拴着,细线跨过定滑轮,另一端用适当大小的力拉住,使小球处于静止状态,这如图所示,把质量为m、带电量为+Q的物块放在倾角α=60°的固定光滑绝缘斜面的顶端,整个装置处在范围足够大的匀强电场中,已知电场强度大小为E=3mgQ,电场方向水平向左,斜面高半径R=4500km的某星球上有一倾角为θ=30°的固定斜面.一质量为m=1lg的小物块在力F作用下从静止开始沿斜面向上运动,力F始终与斜面平行,如图12(甲)所示.已知小物块和斜面间的动带正电的物体A静止于绝缘水平面上,如图.现加一水平向右的匀强电场后物体开始向右运动,已知物体A与绝缘水平面间的摩擦力为电场力的一半,经一段时间后,物体的动能为Ek,此质量为m、初速度为零的物体,在变化不同的合外力作用下都通过位移xo.下列各种情况中合外力做功最多的是()A.B.C.D.如图所示,倾角为37°的粗糙斜面AB底端与半径R=0.4m的光滑半圆轨道BC平滑相连,O为轨道圆心,BC为圆轨道直径且处于竖直方向,A、C两点等高.质量m=1kg的滑块从A点由静止开始下如图所示,滑块质量为m,与水平地面间的动摩擦因数为0.1,它以v0=3gR的初速度由A点开始向B点滑行,AB=5R,并滑上光滑的半径为R的1/4圆弧BC,在C点正上方有一离C点高度也为R如图1所示,在竖直向下,场强为E的匀强电场中,长为2l的绝缘轻杆可绕固定轴O在竖直平面内无摩擦转动,两个小球A、B固定于杆的两端,A、B的质量分别为m1和m2,A带负电,电量为如图为某高台滑雪轨道部分简化示意图.其中AB段是助滑雪道,倾角为α,BC段是水平起跳台,CD段是着陆雪道,倾角θ=37°,轨道各部分与滑雪板间的动摩擦因数均为μ=0.25,图中轨道如图所示,在半径为R的四分之一光滑圆弧轨道的顶端a点,质量为m的物块(可视为质点)由静止开始下滑,经圆弧最低点b滑上粗糙水平面,圆弧轨道在b点与水平轨道平滑相接,物块最如图所示,一物块由静止开始从粗糙斜面上的一点加速下滑到另一点,在此过程中重力做功为WG,物体重力势能变化为△Ep,物体末动能为Ek,物体克服摩擦力做功为Wf(各量均取绝对值一个质量为m=1kg的带孔小球穿在固定的粗糙水平长横杆上,小球与横杆间的动摩擦因数为μ=0.6.某时刻小球获得一个水平向右的瞬时速度v0=15m/s,同时小球受到一个竖直向上的作用如图所示,在高h1=30m的光滑水平平台上,质量m=1kg的小物块压缩弹簧后被锁扣K锁住,储存了一定量的弹性势能Ep.若打开锁扣K,小物块将以一定的速度v1水平向右滑下平台做平抛运如图,AB为粗糙的长直斜面,动摩擦因数μ=0.4,与水平方向的夹角θ=37°,BC为光滑水平面,CDE为光滑曲面,B、C两接口处均光滑连接.D、E两点离水平地面的高度分别为h1=8.64m,某滑沙场有两个坡度不同的滑道AB和AB'(均可看作斜面),甲、乙两名旅游者分别乘两个完全相同的滑沙撬从A点由静止开始分别沿AB和AB'滑下,最后都停在水平沙面BC上,如图所示如图1,质量m=1kg的物体,初速度为v0,方向水平向右.在向右的水平拉力F的作用下,沿粗糙水平面运动,位移为4m时,拉力F停止作用,物体又运动了4m后停下来.其运动过程中的动能如图所示,长度为L=0.9m、质量为m=1kg的木板Q放在粗糙的水平面上,Q的上表面和两个半径为R=0.2m的14光滑圆弧轨道底端相切,已知两圆弧最底端之间的距离为d=1.0m.质量也为如图所示,光滑水平面MN的左端M处固定有一能量补充装置P,使撞击它的物体弹回后动能在原来基础上增加一定值.右端N处与水平传送带恰好平齐且靠近,传送带沿逆时针方向以恒定速如图甲,水平面上质量m=2kg的小物体被一根已压缩的弹簧自A点弹出,与弹簧分离后又滑行一段距离停止在B点.已知物体与水平面间的动摩擦因数μ=0.4,AB间距离X=50cm.(g=10m/s2)北京时间2013年4月20日8时02分,在四川省雅安市芦山县发生7.0级地震.地震引发多处山体崩塌,严重危害灾区人民的生命和财产安全.研究崩塌体的运动时可建立如图所示的简化模型如图所示,在光滑绝缘水平面上,用长为2L的绝缘轻杆连接两个质量均为m的带电小球A和B.A球的带电量为+2q,B球的带电量为-3q,两球组成一带电系统.虚线MN与PQ平行且相距3L,开如图(甲),MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,电阻箱的阻值范围为0~4Ω,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感在水平面上将一小球竖直向上抛出,初速度和初动能分别为v0、Ek0,小球能达到的最大高度为H.若运动过程中小球所受的空气阻力大小不变,小球上升到离水平面的高度为H2时,小球如图所示,一个质量为m的圆环套在一根固定的水平直杆上,杆足够长,环与杆的动摩擦因数为μ.现给环一个向右的初速度v0,如果在运动过程中还受到一个方向始终竖直向上的力F,F如图所示,遥控赛车比赛中一个规定项目是“飞跃壕沟”,比赛要求:赛车从起点出发,沿水平直轨道运动,在B点飞出后越过“壕沟”,落在平台EF段.已知赛车的额定功率P=10.0W,赛车如图所示,竖直平行直线为匀强电场的电场线,电场方向未知,一个质量为m、电荷量为q的带负电粒子以初速度v0从A点垂直电场方向进入电场,该带电粒子经过电场中的B点和C点,不如图是利用太阳能驱动小车的装置,若小车在平直的水泥路上从静止开始加速行驶,经过时间t前进距离s,速度达到最大值vm,在这一过程中电动机的功率恒为P,小车所受阻力恒为F,如图所示,在足够长的光滑曲面上由静止释放一个物体,若以释放物体的时刻作为零时刻,用E、v、x、W分别表示物体的机械能、速度、位移和重力做的功,那么下列四个图象中分别定如图所示,水平地面上OP段是粗糙的,OP长为L=1.6m,滑块A、B与该段的动摩擦因数都为μ=0.5,水平地面的其余部分是光滑的.滑块B静止在O点,其质量mB=2kg.滑块A在O点左侧以v0如图所示,半径为R的光滑半圆轨道ABC与倾角为θ=37°的粗糙斜面轨道DC相切于C,圆轨道的直径AC与斜面垂直.质量为m的小球从A点左上方距A高为h的斜面上方P点以某一速度水平抛出,在“极限”运动会中,有一个在钢索桥上的比赛项目.如图所示,总长为L的均匀粗钢丝绳固定在等高的A、B处,钢丝绳最低点与固定点A、B的高度差为打,动滑轮起点在A处,并可沿钢丝如图所示,在游乐节目中,选手需要借助悬挂在高处的绳子飞越到对面的高台上.一质量m=60kg的选手脚穿轮滑鞋以v0=7m/s的水平速度抓住竖直的绳子开始摆动,选手可看作质点,绳子如图所示,相距为L的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端连接定值电阻R,导轨上水平虚线MNPQ区域内,存在着垂直于轨道平面向下的匀强磁场,磁感应强度为B.一个高尔夫球静止于平坦的地面上.在i=0时球被击出,飞行中球的速率与时间的关系如图所示.若不计空气阻力的影响,根据图象提供的信息可以求出的量是()A.高尔夫球在何时落地B.如图所示,电源电动势为ε,内阻为r,滑动变阻器总阻值为3r,间距为d的两平行金属板AB、CD竖直放置,闭合电键S时,板间电场可视为匀强电场.板间有一长为L的绝缘细轻杆,能绕水为了从货车上卸货,工人在车厢旁倾斜架放一梯子,让质量为m的货箱顺着可视为平滑斜面的梯子下滑,如图.已知车厢顶部离地的高度为h,梯子所在斜面的倾角θ=45°,货箱从车厢顶部
动能定理的试题200
如图所示,.块磁铁放在铁板ABC上的A处,其中AB长为1m,BC长为0.6m,BC与水平面夹角为37°,磁铁与铁板间的引力为磁铁重力的0.2倍,磁铁与铁板间的动摩擦因数μ=0.25,现给磁如图所示,小滑块质量为m,与水平地面间的动摩擦因数为μ=0.1,它以v0=3gR的初速度由A点开始向B点滑行,并滑上光滑的半径为R的14圆弧BC,AB=5R,在C点正上方有一离C点高度也在光滑水平面上固定一个竖直圆筒S,圆筒内壁光滑(如图所示为俯视图),半径为1m.圆筒圆心O处用一根不可伸长的长0.5m的绝缘细线系住一个质量为0.2kg,电量为+5×10-5C的小球,如图所示,高为H=0.45m的台面上有轻质细绳,绳的一端系一质量为m=0.1kg的小球P,另一端挂在光滑的水平轴上O上,O到小球P的距离为R=0.1m,小球与台面接触,但无相互作用,如图所示,倾角为45°的粗糙斜面AB底端与半径R=0.4m的光滑半圆轨道BC平滑相接,O为轨道圆心,BC为圆轨道直径且处于竖直平面内,A、C两点等高.质量m=1kg的滑块从A点由静止开始如图所示,质量M,半径R的光滑半圆槽第一次被固定在光滑水平地面上,质量为m的小球,以某一初速度冲向半圆槽刚好可以到达顶端C.然后放开半圆槽.其可以自由运动,m小球又以同如图,水平地面上方被竖直线MN分隔成两部分,M点左侧地面粗糙,与B球间的动摩擦因数为μ=0.5,右侧光滑.MN右侧空间有一范围足够大的匀强电场,在O点用长为R=5m的轻质绝缘细绳如图,MNP为竖直面内一固定轨道,其14圆弧段MN与水平段NP相切于NP端固定一竖直挡板,NP长度为2m,圆弧半径为1m.一个可视为质点的物块自.M端从静止开始沿轨道下滑,与挡板发生如图所示,一物体在平行于斜面向上的恒力F作用下,由静止从底端沿光滑的斜面向上做匀加速直线运动,经时间t力F做功为60J,此后撤去恒力F,物体又经时间t回到出发点,若以地面质量为30㎏的小孩推着质量为10㎏的冰车,在水平冰面上以2m/s的速度滑行.不计冰面摩擦,若小孩突然以5m/s的速度(对地)将冰车推出后,小孩的速度变为______m/s,这一过程中小孩对如图所示,质量m=0.10kg的小物块,在粗糙水平桌面上做匀减速直线运动,经距离l=1.4m后,以速度v=3.0m/s飞离桌面,最终落在水平地面上.已知小物块与桌面间的动摩擦因数μ=0一物体质量为1kg,沿倾角为300的传送带从最高端A点以初速度v0=8m/s下滑,传送带匀速向下运动的速度为2m/s,全长20m.物体与传送带之间的动摩擦因数为32,物体运动到传送带底端如图所示,质量为2kg的物体沿倾角为30°的固定斜面匀减速上滑了2m距离,物体加速度的大小为8m/s2,(重力加速度g取10m/s2).在此过程中()A.物体的重力势能增加了40JB.物体的机械如图所示,质量为m带电量为+q的小滑块以大小为v0的初速度从A点进入宽度为d的AB绝缘水平面.当滑块运动至中点C时,速度大小为vC=32v0,从此刻起在AB区域内加上一个水平向左的强一个质量为M=3kg的木板与一个轻弹簧相连,在木板的上方有一质量m为2kg的物块,若在物块上施加一竖直向下的外力F,此时木板和物块一起处于静止状态,如图所示.突然撤去外力,有一绝缘的、半径为R的光滑圆轨道固定在竖直平面内,在其圆心处固定一带正电的点电荷,现有一质量为m,也带正电(其电量远小于圆心处的电荷,对圆心处电荷产生的电场影响很小质量为m的物体被绳经过光滑小孔而牵引在光滑的水平面上做匀速圆周运动.当绳子拉力为某个值F时,转动半径为R,当拉力逐渐减小到F4时,物体仍做匀速圆周运动,半径为2R,则此过如图所示,靠在竖直粗糙墙壁上的物块在t=0时被无初速释放,同时开始受到一随时间变化规律为F=kt的水平力作用.用a、v、f和EK分别表示物块的加速度、速度、物块所受的摩擦力、如图(a)所示,AB段是长S=10m的粗糙水平轨道,BC段是半径R=2.5m的光滑半圆弧轨道.有一个质量m=0.1kg的小滑块,静止在A点,受一水平恒力F作用,从A点开始向B点运动,刚好到达某兴趣小组同学对质量为1.0㎏的遥空小车的运动情况进行研究.他们让这辆小车在水平的直轨道上由静止开始运动,并将小车运动的全过程记录下来,通过处理转化为如图所示的v-t图如图所示,虚线左侧存在非匀强电场,MO是电场中的某条电场线,方向水平向右,长直光滑绝缘细杆CD沿该电场线放置.质量为m1、电量为+q1的A球和质量为m2、电量为+q2的B球穿过细一人用力把质量为m的物体由静止竖直向上匀加速提升h,速度增加为v,则对此过程,下列说法正确的是()A.人对物体所做的功等于物体机械能的增量B.物体所受合外力所做的功为12mv如图所示为利用电磁作用输送非导电液体装置的示意图.一边长为L、截面为正方形的塑料管道水平放置,其右端面上有一截面积为A的小喷口,喷口离地的高度为h.管道中有一绝缘活塞如图所示,光滑水平面右端B处连接一个竖直的半径为R的光滑半圆轨道,在离B距离为x的A点,用水平恒力将质量为m的质点从静止开始推到B处后撤去恒力,质点沿半圆轨道运动到C处后如图所示,绘出了汽车刹车时刹车痕(即刹车距离)与刹车前车速的关系.v为车速,s为车痕长度.(1)请用动能定理解释图示中汽车刹车距离与车速的关系曲线.(2)若某汽车发生了车祸,如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角θ=30°,导轨间距l,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度为B=0.2T,方向垂直斜面向上.将甲乙4个相同的木块,每块的质量都是m,每块均可以看作质点,放置在倾角为θ的斜面上,相邻两木块间的距离为l,最下端的木块距底端也是l,木块与斜面间的动摩擦因数为μ,如图所示,如图所示,竖直平面内有一半径为r、内阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与相距为2r、电阻不计的平行光滑金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2为研究静电除尘,有人设计了一个盒状容器,容器侧面是绝缘的透明有机玻璃,它的上下底面是面积A=0.04m2的金属板,间距L=0.05m,当连接到U=2500V的高压电源正负两极时,能在如图所示,两个完全相同的质量为m的木板A、B置于水平地面上,它们的间距s=2.88m.质量为2m,大小可忽略的物块C置于A板的左端.C与A之间的动摩擦因数为μ1=0.22,A、B与水平地如图如示,在水平面上有质量均为m的五个物块并排靠在一起,每个物块与地面间的动摩擦因数均为μ,相邻两物块之间均用长为s的柔软轻绳相连接(图中未画出).现用大小为F=3μmg的水如图所示,AB和BC是由相同材料组成的绝缘斜面和水平面,A与C的水平距离为SAC=5米,H高2.8米,h=0.8米.质量为m的小滑块由A静止开始释放,它恰能运动到C而静止.现在让小滑块德国科学家伦琴由于发现X射线而获得1901年的诺贝尔奖.图是产生X射线的装置-X射线管,其灯丝K加热后发射出的电子,经高电压加速后,打到重金属阳极A上,发出X射线.一种X射线是柴油打桩机的重锤由气缸、活塞等若干部件组成,气缸与活塞间有柴油与空气的混合物.在重锤与桩碰撞的过程中,通过压缩使混合物燃烧,产生高温高压气体,从而使桩向下运动,锤用一根长L=0.8m的轻绳,吊一质量为m=1.0g的带电小球,放在磁感应强度B=0.1T,方向如图所示的匀强磁场中,把小球拉到悬点的右端,轻绳刚好水平拉直,将小球由静止释放,小在光滑水平面上放置两长度相同、质量分别为m1和m2的木板P、Q,在木板的左端各有一大小、形状、质量完全相同的物块a和b,木板和物块均处于静止状态.现对物块a和b分别施加水平如图所示,一质量M=5kg的平板小车静止在水平地面上,小车与地面间的动摩擦因数μ1=0.1,现在给小车施加一个水平向右的拉力F=15N,经t=3s后将一质量为m=2kg的货箱,(可视为质如图所示,水平向右的恒力F=8N,作用在静止于光滑水平面上质量为M=8kg的小车上,当小车的速度达到v0=1.5m/s时,在小车右端相对地面无初速度地放上一个质量为m=2kg的小物块,如图所示,在xoy坐标平面的第一象限内有一沿y轴正方向的匀强电场,在第四象限内有一垂直于平面向里的匀强磁场,现有一质量为m、电量为+q的粒子(重力不计)从坐标原点O射入磁场一带正电的小球,系于长为l的不可伸长的轻线一端,线的另一端固定在O点,它们处在匀强电场中,电场的方向水平向右,场强的大小为E.已知电场对小球的作用力的大小等于小球的重在如图所示,以O点为圆心,以r为半径的圆与坐标轴交点分别为a、b、c、d,空间有一与x轴正方向相同的匀强电场,同时,在O点固定一个电量为+Q的点电荷.如果把一个带电量为-q的如图所示,将平行板电容器极板竖直放置,两板间距离d=0.1m,电势差U=1000V,一个质量m=0.2g,带正电q=10-7C的小球(球大小可忽略不计),用l=0.01m长的丝线悬于电容器极板间起重机将质量500kg的物体由静止竖直地吊起2m高,此时物体的速度大小为1m/s,如果g取10m/s2,则()A.起重机对物体做功1.0×104JB.起重机对物体做功1.025×104JC.重力对物体做正图是导轨式电磁炮实验装置示意图.两根平行长直金属导轨沿水平方向固定,其间安放金属滑块(即实验用弹丸).滑块可沿导轨无摩擦滑行,且始终与导轨保持良好接触.电源提供的强大下雪天,卡车在笔直的高速公路上匀速行驶.司机突然发现前方停着一辆故障车,他将刹车踩到底,车轮被抱死,但卡车仍向前滑行,并撞上故障车,且推着它共同滑行了一段距离l后停如图是某种静电分选器的原理示意图,两个竖直放置的平行金属板带有等量异号电荷,形成匀强电场.分选器漏斗的出口与两板上端处于同一高度,到两板距离相等.混合在一起的a、b两如图所示,在一匀强电场中,竖直面内有一正方形ABCD,CD边与水平面所成的角度为45°,CD边长为l=1m,电势φD=11V,φA=6V,φB=1V,ABCD内固定一个半径R=0.2m的光滑绝缘圆管,圆质量为1.0kg的物体沿图甲所示的光滑斜面向上运动,其速度-时间图象如图乙所示,据图象可判断下列说法错误的是:(g取10m/s2)()A.加速度大小和方向均不变B.前8s内的位移大小为质量m=2kg的物块放在粗糙水平面上,在水平拉力的作用下由静止开始运动,物块动能Ek与其发生位移x之间的关系如图所示.已知物块与水平面间的动摩擦因数μ=0.2,重力加速度g取1下列与能量有关的说法正确的是()A.卫星绕地球做圆周运动的半径越大,动能越大B.从同种金属逸出的光电子的最大初动能随照射光波长的减小而增大C.做平抛运动的物体在任意相等时如图所示,某人将质量为m的石块从距地面h高处斜向上方抛出,石块抛出时的速度大小为v0,不计空气阻力,石块落地时的动能为()A.mghB.12mv20C.12mv20-mghD.12mv20+mgh如图所示,四个电阻阻值均为R,电键S闭合时,有一质量为m,带电量为q的小球静止于水平放置的平行板电容器的中点.现打开电键S,这个带电小球便向平行板电容器的一个极板运动,如图所示为电视机中显像管的原理示意图,电子枪中的灯丝因加热而逸出电子,这些电子再经加速电场加速后,从O点进入由磁偏转线圈产生的圆形匀强磁场区域中,经过偏转磁场后打如图所示,长为L的细绳竖直悬挂着一质量为2m的小球A,恰好紧挨着放置在水平面上质量为m的物块B.现保持细绳绷直,把小球向左上方拉至细绳与竖直方向成60°的位置,然后释放小球如图所示,半径为R的光滑半圆环轨道与高为8R的倾角为53°的粗糙斜面固定在同一竖直平面内,两轨道之间由一条光滑水平轨道CD相连,水平轨道与斜面间有一段圆弧过渡.在水平轨道如图所示,竖直平面内有两个水平固定的等量同种正点电荷,AOB在两电荷连线的中垂线上,O为两电荷连线中点,AO=OB=L,一质量为m、电荷量为q的负点电荷若由静止从A点释放则向上如图所示,相距为d的A、B两平行金属板足够大,板间电压恒为U,有一波长为λ的细激光束照射到B板中央,使B板发生光电效应.已知普朗克恒量为h,金属板B的逸出功为W,电子质量为如图所示,水平台面AB距地面的高度h=0.80m.质量为0.2kg的滑块以v0=6.0m/s的初速度从A点开始滑动,滑块与平台间的动摩擦因数μ=0.25.滑块滑到平台边缘的B点后水平飞出.已知总质量为80kg的跳伞运动员从离地500m的直升机上跳下,经过2s拉开绳索开启降落伞,如图所示是跳伞过程中的v-t图,试根据图象求:(g取10m/s2)(1)t=1s时运动员的加速度和所受阻力水上滑梯可简化成如图所示的模型:倾角为θ=37°斜滑道AB和水平滑道BC平滑连接(设经过B点前后速度大小不变),起点A距水面的高度H=7.0m,BC长d=2.0m,端点C距水面的高度h=1.0如图所示,两个带电小球(可视为质点),固定在轻质绝缘等腰直角三角形框架OAB的两个端点A、B上,整个装置可以绕过O点且垂直于纸面的水平轴在竖直平面内自由转动.直角三角形的如图所示,两根足够长的平行光滑金属导轨MN、PQ与水平面的夹角为α=30°,导轨电阻不计,导轨处在垂直导轨平面斜向上的有界匀强磁场中.两根电阻都为R=2Ω、质量都为m=0.2kg的完如图,ABCD为竖直平面内的光滑绝缘轨道,其中AB段是倾斜的,倾角为37°,BC段是水平的,CD段为半径R=0.15m的半圆,三段轨道均光滑连接,整个轨道处在竖直向下的匀强电场中,为了缩短航空母舰上飞机起飞前行驶的距离,通常用发射架将飞机弹出,使飞机获得一定的初速度,然后进入跑道加速起飞.在静止的航空母舰上,某飞机采用该方法获得的初速度为v0用起重机提升货物,货物上升过程中的v-t图象如图所示.在t=3s到t=5s内,重力对货物做的功为W1、绳索拉力对货物做的功为W2、货物所受合力做的功为W3,则()A.W1>0B.W2<0C.W2>0D如图1所示,用固定的电动机水平拉着质量m=2kg的小物块和质量M=1kg的平板以相同的速度一起匀速水平向右,物块位于平板左侧,可视为质点.在平板的右侧一定距离处有台阶阻挡,平绝缘水平面上固定一负点电荷Q,另一质量为m、电荷量为-q的滑块(可看作点电荷)从a点以初速度v0沿水平面离开Q运动,到达b点时速度减为零.已知a、b间距离为s,滑块与水平面间的如图所示,空间有场强E=0.5N/C的竖直向下的匀强电场,长l=0.33m的不可伸长的轻绳一端固定于O点,另一端系一质量m=0.01kg的不带电小球A,拉起小球至绳水平后,无初速释放.如图所示,空间有与水平方向成θ角的匀强电场.一个质量为m的带电小球,用长L的绝缘细线悬挂于O点.当小球静止时,细线恰好处于水平位置.现用一个外力将小球沿圆弧轨道(图中的虚如图所示有三个斜面1、2、3,斜面1与2底边相同,斜面2和3高度相同,同一物体与三个斜面的动摩擦因数相同,当他们分别沿三个斜面从顶端由静止下滑到底端时,下列说法正确的是如图所示,AB为固定在竖直平面内的14光滑圆弧轨道,轨道的B点与水平地面相切,其半径为R.质量为m的小球由A点静止释放,求:(1)小球滑到最低点B时,小球速度v的大小;(2)小球刚质量为M的拖拉机拉着耙来耙地,由静止开始做匀加速直线运动,在时间t内前进的距离为s.耙地时,拖拉机受到的牵引力恒为F,受到地面的阻力为自重的k倍,把所受阻力恒定,连接杆如图,ABD为竖直平面内的光滑绝缘轨道,其中AB段是水平的,BD段为半径R=0.2m的半圆,两段轨道相切于B点,整个轨道处在竖直向下的匀强电场中,场强大小E=5×103N/C,一不带电滑雪运动中当滑雪板压在雪地时会把雪内的空气逼出来,在滑雪板与雪地间形成一个暂时的“气垫”,从而大大减小雪地对滑雪板的摩擦.然而当滑雪板相对雪地速度较小时,与雪地接触两根粗糙的金属导轨平行放置在倾角为θ=30°的斜面上,导轨左端接有电阻R=10Ω,导轨自身电阻忽略不计.匀强磁场垂直于斜面向上,磁感强度B=0.5T.质量为m=0.1kg,电阻可不计的如图所示,M,N为水平放置的平行金属板,板间电压为U,在N板中心处有一小孔P,在N板上方有一边长L=1.Om的非磁性正方形绝缘框ABCD,AB边中点处有一小孔S,P和S处于同一竖直线高台滑雪以其惊险刺激而闻名,运动员在空中的飞跃姿势具有很强的观赏性.某滑雪轨道的完整结构可以简化成如图24所示的示意图.其中AB段是助滑坡,倾角a=37°;BC段是水平起跳台某学校研究性学习小组对一辆自制小遥控车性能进行研究.他们让这辆小车在水平地面上由静止开始运动,并将小车运动的全过程记录下来,通过数据处理,得到如图所示的v-t图象,已空间某区域内存在电场,电场线在某竖直平面内的分布如图所示.一个质量为m、电量为q的小球在该电场中运动,小球经过A点时的速度大小为v1,方向水平向右,运动至B点时的速度大冰壶比赛是在水平冰面上进行的体育项目,比赛场地示意如图所示.比赛时,运动员在投掷线AB处让冰壶以一定的初速度滑出,使冰壶的停止位置尽量靠近距离投掷线30m远的O点.为使冰如图所示,倾角为37°的足够大斜面以直线MN为界由两部分组成,MN垂直于斜面水平底边PQ且其左边光滑右边粗糙,斜面上固定一个既垂直于斜面又垂直于MN的粗糙挡板.质量为m1=3kg的如图,质量均为m的两个小球A、B固定在弯成120°角的绝缘轻杆两端,OA和OB的长度均为l,可绕过O点且与纸面垂直的水平轴无摩擦转动,空气阻力不计.设A球带正电,B球带负电,电量如图所示,四分之三周长的细圆管的半径R=0.4m,管口B和圆心O在同一水平面上,D是圆管的最高点,其中半圆周BE段存在摩擦,BC和CE段动摩擦因数相同,ED段光滑;质量m=0.5kg、如图所示,质量为m=5kg的摆球从图中A位置由静止开始摆下,当小球摆至竖直位置到达B点时绳子恰好被拉断.已知摆线长为L=1.6m,OA与OB的夹角为60°,悬点O与地面间的距离hOC=4m如图,离子源A产生的初速为零、带电量均为e、质量不同的正离子被电压为U0的加速电场加速后匀速通过准直管,垂直射入匀强偏转电场,偏转后通过极板HM上的小孔S离开电场,经过如图示,在不计摩擦力时小球从高h处自由滚下进入竖直圆环轨道,圆环轨道半径为R,则下列说法中不正确的是()A.当h≥52R时,小球一定能通过环顶B.当R<h<52R时,小球一定在上半环在一个水平面上建立x轴,在过原点O垂直于x轴的平面的右侧空间有一个匀强电场,场强大小E=6×105N/C,方向与x轴正方向相同,在原点O处放一个质量m=0.01kg带负电荷的绝缘物块,2010年11月23日,第16届亚运会跳水展开女子双人10米跳台的争夺,如图所示,中国队陈若琳和汪皓夺取金牌.在亚运会高台跳水比赛中,质量为m的跳水运动员进入水中后受到水的阻力如图所示,两平行光滑的金属导轨MN、PQ固定在水平面上,相距为L,处于竖直向下的磁场中,整个磁场由n个宽度皆为x0的条形匀强磁场区域1、2…n组成,从左向右依次排列,磁感应强一小孩在游泳池中带有一个质量为m的篮球潜入水下,在深为h的水底将篮球无初速释放,篮球在水中加速上升,穿出水面后继续竖直上升,上升的最大高度为H.不计水的粘滞阻力、空气如图所示,在一对以板长为2a、板间距离为23a的平行板围成的矩形EFQP区域内有垂直于纸面向外的匀强磁场.现有一质量为m、电量为q的带正电粒子从静止开始经过电势差为U的电场加如图所示,质量为M的小车停在光滑水平面上,质量为m的小球用长为L的细绳悬挂在车顶上,将小球拉至细绳成水平方向后由静止释放,空气阻力忽略不计,当小球到达细绳成竖直方向如图所示,一个质量为m的圆环套在一根固定的水平长直杆上,环与杆间的动摩擦因数为μ.现给环一个向右的初速度v0,同时对环施加一个竖直向上的作用力F,并使F的大小随v的大小变如图所示,某货场利用固定于地面的、半径R=1.8m的四分之一圆轨道将质量为m1=10kg的货物(可视为质点)从高处运送至地面,已知当货物由轨道顶端无初速滑下时,到达轨道底端的速某人从高为h的地方以初速度v0向某一方向迅速抛出一个质量为m的物体,该物体着地时的速度为v0.求:(1)人在抛出物体时所做的功.(2)物体在空中运动过程中,克服空气阻力所做的功过山车是一种惊险的游乐工具,其运动轨道可视为如图所示的物理模型.已知轨道最高点A离地面高为20m,圆环轨道半径为5m,过山车质量为50kg,g=10m/s2,求:(1)若不计一切阻力,在足球比赛中,红队球员在白队禁区附近主罚定位球,并将球从球门右上角擦着横梁踢进球门.球门的高度为h,足球飞入球门的速度为v,足球的质量为m,则红队球员将足球踢出时对足质量为60kg的消防队员从一根固定的竖直金属杆上由静止滑下,经2.5s落地.消防队员受到的竖直向上的摩擦力变化情况如图所示,取g=10m/s2.在消防队员下滑的过程中:(1)他向下加如图所示,真空中O点处固定一点电荷Q,同时在O点通过绝缘细线悬挂一带电荷量为q质量为m的小球,开始时细线与小球处在水平位置且静止,释放后小球摆到最低点时,细线的拉力为带有等量异种电荷的两块水平金属板M、N正对放置,相距为d(d远小于两板的长和宽),一个带正电的油滴A恰好能悬浮在两板正中央,如图所示.A的质量为m,所带电荷量为q.在A正上方
动能定理的试题300
如下图所示绘出了在车子轮胎与路面间的动摩擦因数分别是μ1与μ2时,刹车痕(即刹车距离)与刹车前车速的关系图线(图线a对应μ1,图线b对应μ2).v为刹车前车速,s为刹车痕长度,已如图所示,在竖直放置的铅屏A的右表面上贴着β射线放射源P,已知β射线实质为高速电子流,放射源放出β粒子的速度v0=1.0×107m/s.足够大的荧光屏M与铅屏A平行放置,相距d=2.0×如图所示,木块质量m=0.4kg,它以速度v=20m/s水平地滑上一辆静止的平板小车,已知小车质量M=1.6kg,木块与小车间的动摩擦因数为μ=0.2,木块没有滑离小车,地面光滑,g取1如图所示的竖直平面内有范围足够大、水平向左的匀强电场,在虚线的左侧有垂直纸面向里的匀强磁场,磁感强度大小为B,一绝缘轨道由两段直杆和一半径为R的半圆环组成,固定在纸如图所示,质量mA为4.0kg的木板A放在水平面C上,木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量mB为1.0kg的小物块B(视为质点),它们均处于静止状态.木板突然受到水一质量为m的带电液滴以竖直向下的初速度V0进人某电场中,由于电场力和重力的作用,液滴沿竖直方向下落一段距离h后,速度减为零.对此过程的下列判断正确的是()A.电场力对液滴一只乒乓球质量为m,从离桌面高为h处由静止释放,假设它与桌面碰撞反弹时不损失机械能,但由于受到大小不变的空气阻力的影响(空气浮力不计),每次反弹的高度是它下落时高度的人站在h高处的平台上,水平抛出一个质量为m的物体,物体落地时的速度为v,以地面为重力势能的零点,不计空气阻力,则有()A.人对小球做的功是12mv2B.人对小球做的功是mghC.小跳高是体育课常进行的一项运动,小明同学身高1.70m,质量为60Kg,在一次跳高测试中,他先弯曲两腿向下蹲,再用力蹬地起跳,从蹬地开始经0.40s竖直跳离地面.假设他蹬地的力一带负电的小球从空中的a点运动到b点的过程中,受重力、空气阻力和电场力作用,重力对小球做功3.5J,小球克服空气阻力做功0.5J,电场力对小球做功1J,则下列选项正确的是(如图匀强电场方向水平向左,带正电的物体沿绝缘水平板向右运动,经过a点时动能为100J,到b点时动能是经过a点处动能的1/5,减少的动能中有3/5转化为电势能,那么,当它再经过质量为2Kg的物体,在竖直平面内高h=1m的光滑弧形轨道A点,以νo=4m/s的初速度沿轨道滑下,并进入BC轨道,如图所示.已知BC段的滑动摩擦系数μ=0.4.(g取10m/s2)求:(1)物体滑至B如图所示,滑块在恒定外力F作用下从水平轨道上的A点由静止出发到B点时撤去外力,又沿竖直面内的光滑半圆形轨道运动,且恰能通过轨道最高点C,AB距离为S,轨道半径为R,求滑块有一个斜面,其底边固定且水平,斜面倾角在0~90°内变化,一质量为1kg的物体以初速度v0自斜面底端沿斜面上滑,滑到最高点时的位移随θ角变化的规律如图所示,则在θ=60°时,物体如图所示的装置中,轻绳将A、B相连,B置于光滑水平面上,拉力F使B以1m/s匀速的由P运动到Q,P、Q处绳与竖直方向的夹角分别为α1=37°,α2=60°.滑轮离光滑水平面高度h=2m,已知m一物体仅受重力作用,由A处运动到B处,物体的动能由12J减少到8J,在此过程中()A.物体的重力势能可能不变B.物体的机械能增加了C.物体的机械能减少了D.物体的位置升高了如图所示,平行板电容器两极板间有场强为E的匀强电场,且带正电的极板接地.一质量为m,电荷量为+q的带电粒子(不计重力)从x轴上坐标为x0处静止释放.(1)求该粒子在x0处电势能E如图所示,是某跳台滑雪的雪道示意简化图,高台滑雪运动员经过一段竖直平面内的圆弧后,从圆弧所在圆的最低点O水平飞出,圆弧半径R=10m.一滑雪运动员连同滑雪板的总质量为50如图所示,半径R=0.8m的光滑14圆弧轨道固定在光滑水平面上,轨道上方的A点有一个可视为质点的质量m=1kg的小物块,小物块由静止开始下落后打在圆弧轨道的B点,假设在该瞬间碰如图所示,A、B为平行金属板,两板相距为d,接在电压为U的电源上,在A板的中央有一小孔M.今有一质量为m的带电质点,自A板上方相距为h的O点由静止自由下落,穿过小孔M后到达距质量为m的质点,从零时刻开始计时,作直线运动的v-t关系图线如图所示,已知v0、t1和t2,根据图中可得,此质点在0-t2的时间内的加速度大小为______,外力对质点所做的总功为_在足球比赛中,甲队队员在乙队禁区附近主罚定位球,并将球从球门右上角贴着门射入,如图所示,已知球门高度为h,足球飞入球门时的速度为v,足球质量为m,不计空气阻力和足球如图所示,有一光滑的T字形支架,在它的竖直杆上套有一个质量为m1的物体A,用长为l的不可伸长的细绳悬挂在套于水平杆上的小环B下,B的质量为m2=m1=m开始时A处于静止状态,系如图所示,一根绝缘细杆的两端各固定着一个小球,两小球带有等量异种电荷,处于匀强电场中,电场方向如图中箭头所示.开始时,细杆与电场方向垂直,现使细杆绕其中心沿顺时针质量为2kg的物体置于粗糙的水平面上,受拉力作用沿水平方向做匀变速直线运动,拉力作用2s后撤去,物体运动的速度图象如图所示,在0~6s时间内,下列说法中正确的是()①拉力F做如图所示,所以O为圆心,R为半径的圆形区域内,有一个水平方向的匀强磁场,磁感应强度大小为B,方向垂直于纸面向外;竖直平行放置的极板A、K相距为d,AK之间的电压可以调节,质量为2kg的物体从静止开始,以8m/s2的加速度竖直向下匀加速运动了5m的距离.g取10m/s2,在这一过程中()A.物体的动能增加了160JB.物体的重力势能增加了100JC.物体的机械能减少一劲度系数k=800N/m的轻质弹簧两端分别连接着质量均为12kg的物体A、B,将他们竖直静止在水平面上,如图所示,现将一竖直向上的变力F作用A上,使A开始向上做匀加速运动,经0.如图所示,光滑斜面的底端a与一块质量均匀、水平放置的平板光滑相接,平板长为2L,L=1.5m,其中心C固定在高为R的竖直支架上,R=1.5m,支架的下端与垂直于纸面的固定转轴O连如图所示,在点O置于一个正点电荷,在过点O的竖直平面内的点A处,自由释放一个带正电的小球,小球的质量为m,带电量为q,小球落下的轨迹如图中实线所示,它与以O为圆心,R为一小滑块静止在倾角为37°的固定斜面的底端,当滑块受到外力冲击后,瞬间获得一个沿斜面向上的速度v0=4.0m/s.已知斜面足够长,滑块与斜面之间的动摩擦因数μ=0.25,sin37°=0空间某区域存在竖直向下的匀强电场,电场线分布如图所示,带电小球质量为m,电量为q,在A点速度为v1,方向水平向右,至B点速度为v2,v2与水平方向的夹角为α,A、B间高度差为质量分别为3m和m的两个物体,用一根细线相连,中间夹着一个被压缩的轻质弹簧,整个系统原来在光滑水平地面上以速度υ0向右匀速运动,如图所示.后来细线断裂,质量为m的物体离如图所示,在真空中A、B两点分别放置等量的正点电荷,在A、B两点间取一个矩形路径abcd,该矩形路径关于A、B两点间连线及连线的中垂线对称.现将一电子沿abcda移动一周,则下列判如图所示,一带正电物体从斜面的A处由静止开始滑下,经过一水平面后又滑上右边的斜面并停留在B处,AB连线与水平面成α角,若在整个空间加上竖直向下的电场,则该物体从A点由静物理学中所说的增量都是指末状态的量与初状态的量之差,下列说法正确的是()A.合外力对物体做功等于物体动能的增量.B.电荷克服电场力做功等于电势能的增量.C.重力做功等于物体如图所示,质量为m的滑块与水平地面间的摩擦因数μ=0.1,原处于静止状态的滑块在瞬间受到大小为I=3mgR的水平冲量作用后由A向B滑行5R,再滑上半径为R的14光滑圆弧BC,在C点正如图所示,两只质量均为120kg的小船静止在水面上,相距10m并用细绳连接.一个质量为60kg的人在船头以恒力F拉绳,不计水的阻力,求:(1)当两船相遇时,两船各行进了多少米?(2)当一块绝缘长板B放在光滑水平地面上,质量为m、电量为q可视为质点的小物块A沿板面以某初速自板左端向右滑动,由于有竖直向下的匀强电场,A滑至板右端时相对板静止.若其他条件不在h=20m高的平台上,弹簧手枪将质量m=10g的子弹以v0=15m/s的速度水平射出.若不计空气阻力,子弹落地速度大小为______m/s,弹簧手枪对子弹做的功是______J(g取10m/s2).在竖直平面内有一边长为l的正方形区域处在场强为E的匀强电场中,电场方向与正方形一边平行.一质量为m、带电量为q的小球由某一边的中点,以垂直于该边的水平初速v0进入该正方人站在h高处的平台上,水平抛出一个质量为m的物体,物体落地时的速度为v,以地面为重力势能的零点,不计空气阻力,则有()A.人对小球做的功是12mv2B.人对小球做的功是12mv2-m如图,一质量为m=10kg的物体,由1/4光滑圆弧轨道上端从静止开始下滑,到达底端后沿水平面向右滑动1m距离后停止.已知轨道半径R=0.8m,g=10m/s2,求:(1)物体滑至圆弧底端时的一带电粒子射入一正点电荷的电场中,运动轨迹如图所示,粒子从A运动到B,则下列说法中正确的是()A.粒子带正电B.粒子的动能一直变大C.粒子的加速度先变小后变大D.粒子在电场中将质量为M=3m的木块固定在光滑水平面上,一颗质量为m的子弹以速度v0沿水平方向射入木块,子弹射穿木块时的速度为v03;现将同样的木块放在光滑的水平面上,相同的子弹仍以速度如图所示,两个小球A和B质量分别是mA=2.Okg,MB=1.Okg,球A静止在光滑水平面上的M点,球B在水平面上以初速度vo=9m/s从远处沿两球的中心连线向着球A运动.假设两球相距L≤18m时质量为m的物体,在距地面为h的高处,以g3的恒定加速度由静止竖直下落到地面,下列说法中不正确的是()A.物体的重力势能减少mgh3B.物体的机械能减少2mgh3C.物体的动能增加mgh3第一次用水平恒力F作用在物体上,使物体在光滑水平面上移动距离s,F做功为W1、平均功率为P1;第二次用相同的力F作用于物体上,使物体沿粗糙水平面移动距离也是s,F做功为W2、质量M=6.0×103kg的客机,从静止开始沿平直的跑道滑行,当滑行距离x=7.2×102m时,达到起飞速度ν=60m/s.(1)起飞时飞机的动能多大.(2)若不计滑行过程中所受的阻力,则飞机受到为了节能,某货场设计了如图所示的送货装置,长为L的水平传送带右端B与一光滑弧面相连,弧面顶端为储货平台,将货物无初速度轻放在传送带左端A,通过传送带到达B端时具有一定显像管是电视机的重要部件,在生产显像管的阴极时,需要用到去离子水.如果去离子水的质量不好,会导致阴极材料中含有较多的SO2-4离子,用这样的阴极材料制作显像管,将造成电物体A放在水平面上与半径为r的圆柱体B用跨过定滑轮的细线相连接,半径为R的圆柱体C穿过细绳后搁在B上,三个物体的质量分别为mA=0.8kg,mB=mC=0.1kg.现让它们由静止开始运动如图,竖直面内两根光滑平行金属导轨沿水平方向固定,其间安放金属滑块,滑块始终与导轨保持良好接触.电源提供的强电流经导轨、滑块、另一导轨流回电源.同时电流在两导轨之间如图所示,粗糙斜面其倾角为α,底端通过长度可忽略的光滑小圆弧与光滑水平面连接..A、B是两个质量均为m=1㎏的小滑块(可视为质点),B的左端连有轻质弹簧,处于静止状态.当滑块如图,两个长均为L的轻质杆,通过A、B、C上垂直纸面的转动轴与A、B、C三个物块相连,整体处于竖直面内.A、C为两个完全相同的小物块,B物块的质量与A小物块的质量之比为2:1,如图所示,用导电的金属丝吊着的一块金属板,与装有电子枪的电源相连,从电子枪发出的电子的初速度为零,用电压U将电子加速后,电子与金属板垂直碰撞.假设所有电子碰撞金属板如图所示,质量为M=400g的铁板固定在一根轻弹簧上方,铁板的上表面保持水平.弹簧的下端固定在水平面上,系统处于静止状态.在铁板中心的正上方有一个质量为m=100g的木块,从离光滑的水平轨道AB,与半径为R的光滑的半圆形轨道BCD相切于B点,其中圆轨道在竖直平面内,B为最低点,D为最高点.一质量为m的小球以初速度v0沿AB运动,恰能通过最高点,则()A.如图所示,质量M=5.0kg的平板车A原来静止于光滑水平面上,A与竖直固定挡板的距离d=0.050m.质量m=3.0kg的滑块B以大小v0=1.64m/s的初速水平向右滑上平板车.一段时间后,A车如图所示,在以O为圆心,半径为R=103cm的圆形区域内,有一个水平方向的匀强磁场,磁感应强度大小为B=0.10T,方向垂直纸面向外.竖直平行放置的两金属板A、K相距为d=203mm,连有一研究性学习小组研究了这样一个课题:人从高处跳下超过多大高度时容易造成骨折.他们查得这样一些资料;一般成人的胫骨的极限抗压强度为p=1.5×108Pa,胫骨的最小面积S=3.一个初动能为Ek的带电粒子,以速度V垂直电场线方向飞入两块平行金属板间,飞出时动能为3Ek.如果这个带电粒子的初速度增加到原来的2倍,不计重力,那么该粒子飞出时动能为()A如图所示,金属极板AB间有电场强度E=200N/CP的匀强电场,一带电量q=-2×10-3C的小球开始时静止在电场中的点,靠近金属极板B处有一挡板S,小球与挡板S的距离x1=5cm,与A板距离如图所示,轻质长绳水平地跨在相距2L的两个小定滑轮A、B上,质量为m的物块悬挂在绳上O点,O与A、B两滑轮的距离相等,在轻绳两端C、D分别施加竖直向下的恒力F=mg.先托住物块,在光滑绝缘的水平面上,用长为2L的绝缘轻杆连接两个质量均为m的带电小球A和B.A球的带电量为+2q,B球的带电量为-3q,组成一带电系统,如图所示,虚线MP为AB两球连线的垂直平分现代科学实验中常用的一种电子仪器叫示波器,它的核心部件是示波管,其工作原理如图所示,电量大小为e的电子在电势差为U1的加速电场中由静止开始运动,然后射入电势差为U2的用长为L的细线拉一质量为m的小球,小球带电量为+q,细线一端悬于固定点O,整个装置放在水平向右一足够大的匀强电场中,小球静止时细线与竖直方向的夹角为θ,电场范围足够大,质子和中于是由更基本的粒子即所谓“夸克”组成的.两个强作用电荷相反(类似于正负电荷)的夸克在距离很近时几乎没有相互作用(称为“渐近自由”);在距离较远时,它们之间就会出现如图甲所示,真空中两水平放置的平行金属板C、D,上面分别开有正对的小孔O1、O2,金属板C、D接在正弦交流电源上,两板C、D间的电压Ucd随时间t变化的图象如图乙所示,t=0时刻如图甲是一种自由电子激光器的原理示意图.经电场加速后的高速电子束,射入上下排列着许多磁铁的管中.相邻两块磁铁的极性是相反的.电子在垂直于磁场的方向上摆动着前进,电子机车从静止开始沿平直轨道以恒定功率起动,所受的阻力始终不变,在机车加速运动的过程中,下列说法正确的是()A.机车的牵引力逐渐增大B.在任意两相等的时间内,牵引力所做的功长木板A放在光滑的水平面上,质量为m的物块B以水平初速度v0从A的一端滑上A的水平上表面,它们在运动过程中的v-t图线如图所示.则根据图中所给出的已知数据v0、t1及物块质量m,如图所示,三块木板A、B、C的质量均为m,长度均为L.A、B置于水平地面上,它们的间距s=2m.C置于B板的上端并对齐.A、B、C之间及A、B与地面之间的动摩擦因数均为μ=0.2,最大静如图所示,质量为m=10kg的两个相同的物块A、B(它们之间用轻绳相连)放在水平地面上,在方向与水平方面成θ=37°角斜向上、大小为100N的拉力F作用下,以大小为v0=4.0m/s的速度向如图所示,有一质量为m的物块静止在水平桌面左端,长为L的细线竖直悬挂一个质量为2m的小球,小球刚好与物块接触.现保持细线绷直,把小球拉向左上方使细线与竖直方向成60°夹角如图甲所示,光滑的水平地面上固定一长为L=1.7m长木板C,板的左端有两小物块A和B,其间夹有一根长为1.0m的轻弹簧,弹簧没有形变,且与物块不相连.已知mA=mC=20kg,mB=40kg起重机以1m/s2的加速度将质量为1000kg的货物由静止匀加速地向上提升,若g取10m/s2,则在1s内起重机对货物所做的功是()A.500JB.4500JC.5000JD.5500J如图所示,半径R=0.40m的光滑半圆环轨道处于竖直平面内,半圆环与粗糙的水平地面相切于圆环的端点A.一质量m=0.10kg的物块(可以看成质点),在离A点4.0m处的C点以初速度V0冲飞行时间质谱仪可以对气体分子进行分析.如图所示,在真空状态下,脉冲阀P喷出微量气体,经激光照射产生不同价位的正离子,自a板小孔进入a、b间的加速电场,从b板小孔射出,沿A、B两物体的质量分别为mA、mB,且mA>mB.它们与水平面间的摩擦因数相同,两物体具有相同的动能,它们在水平面上同时开始运动,最终停止.A物体运动的时间为tA,位移为SA,B物人用手将1kg的物体由静止向上提起1m,经历时间为2s,这时物体的速度为2m/s,取g=10m/s2,下列说法错误的是()A.物体克服重力做功10JB.手对物体做功2JC.合外力做功2JD.2s内重力null光滑水平面上放着质量mA=lkg的物块A与质量mB=2kg的物块B,A与B均可视为质点,A靠在竖直墙壁上,A、B间夹一个被压缩的轻弹簧(弹簧与A、B均不拴接),用手挡住B不动,此时弹簧弹如图所示电梯质量为M,在它的水平地板上放置一质量为m的物体,电梯在钢索的拉力作用下由静止开始竖直向上做匀加速运动,当它上升到H时,电梯的速度达到v,则在这过程中以下说将一小球从空中M点以速度v0水平向右抛出,小球落在地面上的P点,落地时动能为Ek,N点是小球运动轨迹上的一点,若将小球从N点以速度v1水平向右抛出,小球落在地面上的Q点,落如图甲所示,在场强大小为E、方向竖直向下的匀强电场内存在一个半径为R的圆形区域,O点为该圆形区域的圆心,A点是圆形区域的最高点,B点是圆形区域最右侧的点.在A点由放射源某边防哨所附近的冰山上,突然发生了一次“滑坡”事件,一块质量m=840kg的冰块滑下山坡后,直对着水平地面上正前方的精密仪器室(图(a)中的CDEF)冲去.值勤的战士目测现场情况判在2008年北京奥运会上,跳水运动员陈若琳取得了女子10米跳台的金牌.假设她的质量为m,进入水后受到水的阻力而做匀减速运动,设水对她的阻力大小恒为F,那么在她减速下降h的过如图所示,一个质量为m的小球,用长为l的绳悬挂于O点,小球在水平恒力F的作用下从平衡位置P点,由静止开始运动,运动过程中绳与竖直方向的最大夹角为θ=60°,则F力的大小为()如图所示,质量M=10kg,上表面光滑的足够长的木板在水平拉力F=20N的作用下,以υ0=5m/s的初速度沿水平地面向右匀速运动,现有足够多的小铁块,它们质量均为m=1kg,将一铁块无如图所示,半径R=0.80m的14光滑圆弧轨道竖直固定,过最低点的半径OC处于竖直位置.其右方有底面半径r=0.2m的转筒,转筒顶端与C等高,下部有一小孔,距顶端h=0.8m.转筒的轴如图所示,一水平圆盘绕过圆心的竖直轴转动,圆盘边缘有一质量m=1.0kg的小滑块.当圆盘转动的角速度达到某一数值时,滑块从圆盘边缘滑落,经光滑的过渡圆管进入轨道ABC.已知如图所示,半径R=0.1m的竖直半圆形光滑轨道bc与水平面ab相切.质量m=0.1kg的小滑块B放在半圆形轨道末端的b点,另一质量也为m=0.1kg的小滑块A以v0=210m/s的水平初速度向B滑如图,有一高台离地面的高度h=5.0m,摩托车运动员以v0=10m/s的初速度冲上高台后,以vt=7.5m/s的速度水平飞出.摩托车从坡底冲上高台过程中,历时t=16s,发动机的功率恒为P=一质量为m,动能为EK的子弹,沿水平方向射入一静止在光滑水平面上的木块.子弹最终留在木块中.若木块的质量为9m.则()A.木块对子弹做功的绝对值为0.99EKB.木块对子弹做功的绝如图所示,斜面AB和水平面BC是由同一板材上截下的两段,在B处用小圆弧连接.将小铁块(可视为质点)从A处由静止释放后,它沿斜面向下滑行,进入平面,最终静止于P处.若从该板材我国将于2008年下半年发射围绕地球做圆周运动的“神舟七号”载人飞船.届时,神舟七号将重点突破航天员出舱活动(太空行走如图)技术.从神舟七号开始,我国进入载人航天二期工程.如图是一高山滑雪运动场中的滑道,BD附近是很小的一段曲道,可认为是半径均为R=40m的两圆滑连接的圆形滑道,B点和D点是两圆弧的最高点和最低点,圆弧长度远小于斜面BC长度,如图所示,在平台的A点处静止一质量为M=0.8kg的木块,平台离地面高h=1.25m,木块离平台的右边缘L1=1.5m.现用一个水平向右、大小等于10N的力F作用在木块上,使木块向右运动如(甲)所示,一根长为L的轻绳上端固定在O点,下端拴一个重为G的小钢球A,球处于静止状态.现对球施加一个方向水平向右的外力F,使球缓慢地偏移,在移动过程中的每一时刻,都可
动能定理的试题400
如图甲所示,在空间存在一个变化的电场和一个变化的磁场,电场的方向水平向右(图甲中由B到C),场强大小随时间变化情况如图乙所示;磁感应强度方向垂直于纸面、大小随时间变化人多所示,在光滑绝缘水平面两端有两块平行带电金属板A、B,其间存在着场强E=200N/C的匀强电场,靠近正极板B处有一薄挡板S.一个带电小球,质量为m=1×10-2kg、电量q=-2×10-十真空中存在着空间范围内足够大的,水平向右的匀强电场,在电场中,若将一个质量为m,带正电的小球由静止释放,运动中小球的速度与竖直方向的夹角为37.(取sin37.=0.6,cos37某人在距离地面高25m处,斜向上方抛出一个质量为100克的小球,小球出手时的速度为v0=10m/s落在时的速度为v=20m/s(g=10m/s2)试求:(1)人抛出小球时做了多少功?(2)若小球落地后如图所示,质量为m1的物体A经一轻质弹簧与下方地面上质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一质量m=2kg的物体以50J的初动能在粗糙的水平面上滑行,其动能与位移关系如图所示,则物体所受阻力Ff为______N,物体在水平面上滑行的时间t为______s.如图所示,带正电的粒子以一定的初速度v0沿两板的中线进入水平放置的平行金属板内,恰好沿下板的边缘飞出.已知板长为L,板间距离为d,板间电压为U,带电粒子的电荷量为q,粒如图,L型弯管有一柔软但不可被压缩(或拉伸)的长度为l的物体,其截面直径比L型弯管径略小(管径与物体的长度相比可以忽略),该物体可在L型弯管中移动,且物体在弯角处移动时无如图所示,木板可绕固定的水平轴O转动.木板从水平位置OA缓慢转到OB位置,木板上的物块始终相对于木板静止.在这一过程中,物块的重力势能增加了2J.用FN表示物块受到的支持力,如图(a)所示,质量为m的小球放在光滑水平面上,在界线MN的左方始终受到水平恒力F1作用,在MN的右方除受F1外还受到与F1在同一条直线上的水平恒力F2的作用.小球从A点由静止开始如图所示,水平地面上静止放置着物块B和C相距l=1.0m物快A以速度v0=10m/s沿水平方向与B正碰,碰撞后A和B牢固粘在一起向右运动,并再与C发生正碰,碰后瞬间C的速度v=2.0m/s,如图所示,水平桌面处有水平向右的匀强电场,场强大小E=2×104V/m,A、B是完全相同的两个小物体,质量均为m=0.1kg,电量均为q=2×10-5C,且都带负电,原来都被按在桌面上的P点节日燃放礼花弹时,要先将礼花弹放入一个竖直的炮筒中,然后点燃礼花弹的发射部分,通过火药剧烈燃烧产生的高压燃气,将礼花弹由炮筒底部射向空中,若礼花弹在由炮筒底部击发(辨析题)如图所示,长为L的轻绳一端固定在O点,另一端系一质量为m的小球,在最低点给小球一水平初速度v0,同时对小球施加一大小不变,方向始终垂直于绳的力F,小球沿圆周运动一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端.已知小物块的初动能为E,它返回斜面底端的速度大小为V,克服摩擦阻力做功为E2.若小物块冲上斜面的初动能变为2E,则一质量为1kg的滑块,以4m/s的速度在光滑水平面上向左滑行.从某一时刻起在滑块上作用一水平向右的力,这个水平力作用一段时间后被撤去,已知这个力在此过程中对滑块共做了10J如图所示,一个电量为+Q的点电荷甲,固定在绝缘水平面上的O点,另一个电量为-q、质量为m的点电荷乙从A点以初速度v0沿它们的连线向甲运动,到B点时速度最小且为v.已知静电力常一环状物体套在光滑水平直杆上,能沿杆自由滑动,绳子一端系在物体上,另一端绕过定滑轮,用大小恒定的力F拉着,使物体沿杆自左向右滑动,如图所示,物体在杆上通过a、b、c三航天飞机,可将物资运送到空间站,也可维修空间站出现的故障.(1)若已知地球半径为R,地球表面重力加速度为g,某次维修作业中,与空间站对接的航天飞机的速度计显示飞机的速度如图所示,一个与平台连接的足够长斜坡倾角θ=arcsin130,一辆卡车的质量为1t.关闭发动机,卡车从静止开始沿斜坡滑下,最大速度可达120km/h,已知卡车运动过程中所受空气阻力2009年中国女子冰壶队首次获得了世界锦标赛冠军,这引起了人们对冰壶运动的关注.冰壶在水平冰面上的一次滑行可简化为如下过程:如图,运动员将静止于O点的冰壶(视为质点)沿直探究某种笔的弹跳问题时,把笔分为轻质弹簧、内芯和外壳三部分,其中内芯和外壳质量分别为m和4m.笔的弹跳过程分为三个阶段:①把笔竖直倒立于水平硬桌面,下压外壳使其下端接触如图所示,竖直平面内有一根直角杆AOB,杆的水平部分粗糙,动摩擦因数μ=0.2,杆竖直部分光滑,两部分各套有质量均为2kg的滑环A和B,两环间用细绳相连,绳长L=1m,开始时绳与如图所示,直线形挡板p1p2p3与半径为r的圆弧形挡板p3p4p5平滑连接并安装在水平台面b1b2b3b4上,挡板与台面均固定不动.线圈c1c2c3的匝数为n,其端点c1、c3通过导线分别与电阻如图所示,轻弹簧一端连于固定点O,可在竖直平面内自由转动,另一端连接一带电小球P,其质量m=2×10-2kg,电荷量q=0.2C.将弹簧拉至水平后,以初速度V0=20m/s竖直向下射出小球如图所示,两平行的光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l、足够长且电阻忽略不计,导轨平面的倾角为α,条形匀强磁场的宽度为d,磁感应强度大小为B、方向与导轨平质量为m的汽车在平直路面上启动,启动过程的速度图象如图所示.从t1时刻起牵引力的功率保持不变,整个运动过程中汽车所受阻力恒为Ff,则()A.0-t1时间内,汽车的牵引力等于mv1如图所示,倾角θ=37°的斜面上,轻弹簧一端固定在A点,自然状态时另一端位于B点,斜面上方有一半径R=1m、圆心角等于143°的竖直圆弧形光滑轨道与斜面相切于D处,圆弧轨道的最高如图所示,小车的质量为M=3kg,车的上表面左端为14光滑圆弧BC,右端为水平粗糙平面AB,二者相切于B点,AB的长为L=4m,一质量为m=1kg的小物块,放在车的最右端,小物块与车之滑雪运动员从A点由静止沿倾角为θ的斜面滑下,经一平台后水平飞离B点,B点离地高度为H,斜面、平台与滑雪板之间的动摩擦因数均为μ.OA=OB=L,假设滑雪者由斜面底端进入平台后立如图所示,某要乘雪橇从雪坡经A点滑到B点,接着沿水平路面滑至C点停止.人与雪橇的总质量为70kg.右表中记录了沿坡滑下过程中的有关数据,开始时人与雪橇距水平路面的高度h=20如图所示,在某旅游景点的滑沙场有两个坡度不同的滑道AB1和AB2(都可看成斜面,斜面与水平面接触的地方可以看成弧面).甲、乙两名旅游者各乘一个滑沙橇同时从A处静止出发分别沿在研究性学习中,某同学设计了一个测定带电粒子比荷的实验,其实验装置如图所示.abcd是一个长方形盒子,在ad边和cd边上各开有小孔f和e,e是cd边上的中点,荧光屏M贴着cd放置钍核90230Th发生衰变生成镭核88226Ra并放出一个粒子.设该粒子的质量为m、电荷量为q,它进入电势差为U的带窄缝的平行平板电极S1和S2间电场时,其速度为v0,经电场加速后,沿O如图所示,把质量为m、带电量为+Q的物块放在倾角α=60°的固定光滑绝缘斜面的顶端,整个装置处在范围足够大的匀强电场中.已知电场强度大小E=3mgQ,电场方向水平向左,斜面高为一传送带装置如图所示,其中AB段是水平的,长度LAB=4m,BC段是倾斜的,长度lBC=5m,倾角为θ=37°,AB和BC在B点通过一段极短的圆弧连接(图中未画出圆弧),传送带以v=4m/s的恒定两根长直轨道与一半径为R的半圆型圆弧轨道相接于A、C两点,B点为轨道最低点,O为圆心,轨道各处光滑且固定在竖直平面内.质量均为m的两小环P、Q用长为2R的轻杆连接在一起,套如图,竖直放置的斜面CD的下端与光滑圆弧轨道ABC的C端相切,圆弧半径为R,圆心与A、D在同一水平面上,∠COB=45°,现将一个质量为m的小物块从A点上方距A竖直高度为h=0.5R的位如图,A、B两木块用紧绷的细线相连,细线长0.5m,两木块的质量为mA=1.0kg,mB=2.0kg,在水平向右的拉力作用下以某一速度水平向右做匀速运动,两物体与地面间的摩擦力与重如图所示为研究电子枪中电子在电场中运动的简化模型示意图.在Oxy平面的ABCD区域内,存在两个大小均为E的匀强电场I和II,两电场的边界均是边长为L的正方形(不计粒子所受重力)物体从斜面底部以一定的速率沿斜面向上运动,斜面底边水平,倾角可在0°~90°之间变化,物体沿斜面到达的最远距离x和倾角θ的关系如图所示,求:(1)物体与接触面的动摩擦因数;(连接A、B两点的在竖直面内的弧形轨道ACB和ADB形状相同、材料相同,如图所示.一个小物体从A点以一定初速度v开始沿轨道ACB运动,到达B点的速度为v1;若以相同大小的初逮度v沿轨一辆电动自行车,蓄电池一次充足电后可向电动机提供E0=1.5×106J的能量,电动机的额定输出功率为P=120w.已知电动车(含电池)的质量m=40kg,最大载重(即骑车人和所载货物的最大我国的“嫦娥奔月”月球探测工程已经启动,分“绕、落、回”三个发展阶段:在2007年已发射一颗围绕月球飞行的卫星,计划在2012年前后发射一颗月球软着陆器,在2018年后发射一颗返如图所示,光滑水平面上静止一质量为M=0.98㎏的物块.紧挨平台右侧有传送带,与水平面成θ=30°角,传送带底端A点和顶端B点相距L=3m.一颗质量为m=0.02kg的子弹,以v0=300m/s的如图所示,处于同一条竖直线上的两个固定点电荷A、B带等量同种正电荷,电荷量均为Q,GH是它们连线的垂直平分线,另有一个带电小球C,质量为m、电荷量为+q(可视为点电荷),被质量为m=1kg的物体从斜面底端出发以初速度v0沿斜面向上滑,其速度随时间变化关系图象如图所示,g=10m/s2,求:(1)斜面的倾角θ及恒定阻力Ff的大小;(2)物体上滑过程中离开出发如图所示,质量为m的小球用长为l的轻质细线悬挂于O点,与O点处于同一水平线的P点处有一根光滑的细钉,已知OP=l2,在A点给小球一个水平向左的初速度v0,发现小球恰好能到达跟如图所示的“s”形玩具轨道,该轨道是用内壁光滑的薄壁细圆管弯成,放置在竖直平面内,轨道弯曲部分是由两个半径相等的半圆对接而成,圆的半径比细管内径大得多,轨道底端与水如图所示,把小车放在光滑的水平桌面上,用轻绳跨过定滑轮使之与盛有沙子的小桶相连,已知小车的质量为M,小桶与沙子的总质量为m,把小车从静止状态释放后,在小桶下落竖直高图中滑块和小球的质量均为m,滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块上的悬点O由一不可伸长的轻绳相连,轻绳长为l.开始时,轻绳处于水平拉直状态,小球和滑块某研究性学习小组用加速度传感器探究物体从静止开始做直线运动的规律,得到了质量为1.0kg的物体运动的加速度随时间变化的关系图线,如图所示.(1)请简要说明物体的运动情况;如图所示,可视为质点的物块A、B、C放在倾角为θ=37°、长L=2.0m的固定斜面上,物块与斜面间的动摩擦因数μ=0.5,A与B紧靠在一起,C紧靠在固定挡板上,物块的质量分别为mA=0.初中物理第二册《机械能》第一节告诉我们:物体由于运动而具有的能叫动能,动能的表达式EK=12mv2.质量m=1kg的物体,在水平拉力F的作用下,沿粗糙水平面运动,经过位移4m时,拉力如图所示,一根长l=0.8m轻绳一端固定在O点,另一端栓一质量m=0.1kg的小球静止于A点,其右方有底面半径r=0.2m的转筒,转筒顶端与A等高,下部有一小孔,距顶端h=0.8m.现使如图所示,两个固定的斜面底边长度相等,斜面倾角θ1<θ2,质量相同的物体(可视为质点)A、B由静止开始分别从斜面的顶部滑到底部,两物体与斜面的动摩擦因数相同下列说法正确的跳伞运动员从高度H处由静止下落,假设运动员沿直线运动,经历加速下降和减速下降两个过程,最后以速度v着地.将运动员和伞看成一个系统,总质量为M.在这两个过程中,下列说法如图所示,两块相同的金属板M和N正对并水平放置,它们的正中央分别有小孔O和O′,两板间距离为2L,两板间存在竖直向上的匀强电场.AB是一长3L的轻质绝缘细杆,杆上等间距地固定如图所示,斜面AB、DB摩擦因数相同.可视为质点的物体,分别沿AB、DB从斜面顶端由静止下滑到底端,下列说法正确的是()A.物体沿斜面DB滑动到底端时动能较大B.物体沿斜面AB滑动如图所示,粗糙平台高出水平地面h=1.25m,质量为m=1kg的物体(视作质点)静止在与平台右端B点相距L=2.5m的A点,物体与平台之间的动摩擦因数为μ=0.4.现对物体施加水平向右的质量相等的甲、乙两车从某点同时开始沿直线同方向运动,甲以一定的功率加速,乙做匀加速运动.经过t时间,甲、乙速度相同,设两车所受阻力相等且为恒力,则()A.t时刻甲车一定水平推力F1和F2(F1>F2)分别作用于两个静止在同一水平面,且完全相同的物体上,使物体开始运动,F1和F2各自作用一段时间后撤去,两物体最终都停止运动.如果两个物体的运动时间某物块以80J初动能从固定斜面底端上滑,以斜面底端为零势能参考平面,到达最高点时物块的重力势能为50J.在返回斜面底端的过程中,当物块的重力势能为20J时,动能为______J;如图所示的ABC是游乐场中的滑道模型,它位于竖直平面内,BC滑道水平,AB与水平面夹角为θ,DE是水面,AB=BC=CD=l.滑船(可视为小滑块)从A点由静止开始下滑,滑船与AB滑道间的动如图是某中学科技小组制作的利用太阳能驱动小车的装置.当太阳光照射到小车上方的光电板,光电板中产生的电流经电动机带动小车前进.若小车在平直的水泥路上从静止开始加速行驶建筑工地上,某建筑工人甲从地面向上抛出一质量为m的砖块,被离地面高为h的平台上的乙接住.已知抛出时的速度为v0,当它被乙接住时的速度为v,用g表示重力加速度,则在此过程如图所示;“U”形框架由两平行金属板A、B和绝缘底座P组成,在金属板A、B上同一高度处开有两个小孔M、N,并在M、N之间固定一绝缘光滑平板,整个装置静止固定在水平面上.两平行如图所示,固定曲面AC是一段半径为4.0m的光滑圆孤形成的,圆弧与水平方向相切于A点,AB=10cm.现将一小物体先后从孤面顶端C和圆孤中点D处由静止释放,到达孤面底端时的速度分如图所示,半径R=2m的四分之一粗糙圆弧轨道AB置于竖直平面内,轨道的B端切线水平,且距水平地面高度为h=1.25m.现将一质量m=0.2kg的小滑块(可视为质点)从A点由静止释放,小质量为2kg的物体,以lm/s的速度在光滑水平面上向左滑行,从某时刻起受到一水平向右的力作用,经过一段时间后,滑块的速度方向变为水平向右,大小为lm/s,在此过程水平力做的如图所示,两个内壁光滑、半径不同的半圆轨道固定于地面,一个小球先后在与球心在同一水平高度的A、B两点由静止开始下滑,通过轨道最低点时()A.A球对轨道的压力等于B球对轨道雨点在下落过程中受到的空气阻力与雨点的横截面积S成正比,与雨点下落的速度v的平方成正比,即f=kSv2(其中k为比例系数).雨点接近地面时近似看做匀速直线运动,重力加速度为g如图所示,滑块质量为m,与水平地面间的动摩擦因数为0.1,它以v0=3gR的初速度由A点开始向B点滑行,AB=5R,并滑上光滑的半径为R的1/4圆弧BC,在C点正上方有一离C点高度也为R如图所示是录自明代《天工开物》中的一幅图,它描述的是我同古代的一种农业机械,叫做水碾.它是利用水的动能来做功的装置.当水冲击下部水轮时,转动的轮子会带动上部的石碾来碾如图所示,可视为质点的三物块A、B、C放在倾角为θ=30°、长为L=2m的固定斜面上,三物块与斜面间的动摩擦因数均为μ=7380,A与B紧靠在一起,C紧靠在固定挡板上,其中A为不带电的质点在一恒力作用下从静止开始运动,表示恒力所做的功与力的作用时间的关系图线可能是图中的()A..直线AB..曲线BC..曲线CD..直线D光滑绝缘水平面AB上有C、D、E三点.CD长L1=10cm,DE长L2=2cm,EB长L3=9cm.另有一半径R=0.1m的光滑半圆形金属导轨PM与水平面相连,P点接地,不计BP连接处能量损失.现将两个带如图甲所示,质量m=1kg的小球放在光滑水平面上,在分界线MN的左方始终受到水平恒力F1的作用,在MN的右方除受F1外还受到与F1在同一条直线上的水平恒力F2的作用.小球从A点由静如图所示,木块A、B并排且固定在水平桌面上,A的长度是L,B的长度是2L,一颗子弹沿水平方向以速度v1射入A,以速度v2穿出B,子弹可视为质点,其运动视为匀变速直线运动,则子质量为m=1kg的小物块轻轻放在水平匀速运动的传送带上的P点,随传送带运动到A点后水平抛出,小物块恰好无碰撞的沿圆弧切线从B点进入竖直光滑圆孤轨道下滑.B、C为圆弧的两端点如图所示,光滑绝缘水平面AB与倾角θ=370,长L=6m的绝缘斜面BC在B处圆滑相连,在斜面的C处有一与斜面垂直的弹性绝缘挡板,质量m=0.5kg、所带电荷量q=5x10-5C的绝缘带电滑块置如图所示,BCDG是光滑绝缘的34圆形轨道,位于竖直平面内,轨道半径为R,下端与水平绝缘轨道在B点平滑连接,整个轨道处在水平向左的匀强电场中.现有一质量为m、带正电的小滑块物体在竖直向上的拉力F作用下竖直向上运动,运动的v-t图象如图所示.在0-2s、2-3s、3-5s三段时间内F做功依次为W1、W2和W3,则它们的大小关系正确的是()A.W1>W2>W3B.W1=W2=W3C质量为m=2.0kg的物体从原点出发沿x轴运动,当x=0时物体的速度为4.0m/s.作用在物体上的合力F随位移的变化情况如图所示.则在第1个1m的位移内合力对物体做的功W=______J;在x如图所示,粗糙的斜槽轨道与半径R=0.5m的光滑半圆形轨道BC连接,B为半圆轨道的最底点,C为最高点.一个质量m=0.5kg的带电体,从高为H=3m的A处由静止开始滑下,当滑到B处时速如图所示,绝缘轻杆长L=0.9m,两端分别固定着带等量异种电荷的小球A、B,质量分别为mA=4×10-2kg,mB=8×10-2kg,A球带正电,B球带负电,电荷量q=6.0×10-6C.轻杆可绕过O点的如图所示,小物体放在高度为h=1.25m、长度为S=1.5m的粗糙水平固定桌面的左端A点,以初速度vA=4m/s向右滑行,离开桌子边缘B后,落在水平地面C点,C点与B点的水平距离x=1m,如图甲所示,竖直放置的金属板A、B中间开有小孔,小孔的连线沿水平放置的金属板C、D的中间线,粒子源P可以间断地产生质量为m、电荷量为q的带正电粒子(初速不计),粒子在A、B如图所示,质量为m的小球A沿高度为h倾角为θ的光滑斜面以初速v0滑下,另一质量与A相同的小球B自相同高度同时由静止落下,结果两球同时落地.下列说法正确的是()A.重力对两球做如图a所示,光滑绝缘水平面上有甲、乙两个点电荷.t=0时,乙电荷向甲运动,速度为6m/s,甲的速度为0.之后,它们仅在静电力的相互作用下沿同一直线运动(整个运动过程中没有接触如图所示,是某跳台滑雪的雪道示意简化图,高台滑雪运动员经过一段竖直平面内的圆弧后,从圆弧所在圆的最低点O水平飞出,圆弧半径R=10m.一滑雪运动员连同滑雪板的总质量为50如图所示,间距为L=0.45m的带电金属板M、N竖直固定在绝缘平面上,板间形成匀强电场,场强E=1.5×104V/m.N板接地(电势为零),其中央有一小孔,一根水平绝缘细杆通过小孔,其一固定的斜面,倾角为45°,斜面长L=2.0米,在斜面下端有-与斜面垂直的挡板.一质量为m的滑块,从斜面的最高点沿斜面下滑,初速度为零.滑块沿斜面下滑到斜面最低端与挡板发生如图所示,电梯质量为M,它的水平地板上放置一质量为m的物体,电梯在钢索的拉力作用下由静止开始竖直向上加速运动.当上升高度为H时,电梯的速度达到v,则在这段过程中,下列如图所示,一根质量为m的金属棒MN水平放置在两根竖直的光滑平行金属导轨上,并始终与导轨保持良好接触,导轨间距为L,导轨下端接一阻值为R的电阻,其余电阻不计.在空间内有垂如图所示,一质量为m的滑块以大小为v0的速度经过水平直轨道上的a点滑行距离为s后开始沿竖直平面的半圆形轨道运动,滑块与水平直轨道间的动摩擦因数为μ,水平直轨道与半圆形轨如图所示,沿水平方向放置一条平直光滑槽,它垂直穿过开有小孔的两平行薄板,板相距3.5L.槽内有两个质量均为m的小球A和B,A球带电量为+q,B球带电量为-3q,两球由长为2L的轻如图所示,一个质量为m的物体以某一速度从A点冲上倾角为30°的斜面,其运动的加速度为3g/4,这物体在斜面上上升的最大高度为h,则在这一过程中()A.重力势能增加了34mghB.机械图是一种过山车的简易模型,它由水平轨道和在竖直平面内的二个圆形轨道组成,B、C分别是二个圆形轨道的最低点,BC间距L=12.5m,第一圆形轨道半径R1=1.4m.一个质量为m=1.0如图1所示,相距为L的光滑平行金属导轨与水平面的夹角为α,导轨一部分处在垂直导轨平面的匀强磁场中,OO′为磁场边界,磁感应强度为B,导轨右端接有定值电阻R,导轨电阻忽略不