◎ 题干
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为e=
3
3
,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+2=0相切,A.B分别是椭圆的左、右顶点,P为椭圆C上的动点.
(1)求椭圆C的标准方程;
(2)若P与A、B均不重合,设直线PA与PB的斜率分别为k1、k2,证明:k1?k2为定值;
(3)若M为过P且垂直于x轴的直线上的点,且
|OP|
|OM|
=2,求点M的轨迹方程.
◎ 答案
查看答案
◎ 解析
查看解析
◎ 知识点
    根据n多题专家分析,试题“已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为e=33,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+2=0相切,A.B分别是椭圆的左、右顶点,P为椭圆C上的动点.(1)求椭圆C的标准…”主要考查了你对  【椭圆的性质(顶点、范围、对称性、离心率)】【圆锥曲线综合】  等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。