◎ 题干
阅读下面材料:根据两角和与差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
令α+β=A,α-β=β 有α=
A+B
2
,β=
A-B
2

代入③得 sinA+subB=2sin
A+B
2
cos
A-B
2

(Ⅰ) 类比上述推理方法,根据两角和与差的余弦公式,证明:cosA-cosB=-2sin
A+B
2
sin
A-B
2

(Ⅱ)求值:sin220°+cos250°+sin20°cos50°(提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论)
◎ 答案
查看答案
◎ 解析
查看解析
◎ 知识点
    根据n多题专家分析,试题“阅读下面材料:根据两角和与差的正弦公式,有sin(α+β)=sinαcosβ+cosαsinβ------①sin(α-β)=sinαcosβ-cosαsinβ------②由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③令α+β=A,α-β=…”主要考查了你对  【三角函数的诱导公式】  等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。
◎ 相似题
与“阅读下面材料:根据两角和与差的正弦公式,有sin(α+β)=sinαcosβ+cosαsinβ------①sin(α-β)=sinαcosβ-cosαsinβ------②由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③令α+β=A,α-β=”考查相似的试题有: